The end goal will be also merging of disasm and cpu decoder to one module and remove the disasm.
Two bug fixes on the way:
TBM: fixed 64-bit TBM instructions with memory access (did 32-bit load instead of 64-bit)
BMI2: fixed operands order for PEXT/PDEP instructions
AVX2: fixed gather instruction decoding bug from decoder alias commit
Bochs instruction emulation handlers won't refer to direct fields of instructions like MODRM.NNN or MODRM.RM anymore.
Use generic source/destination indications like SRC1, SRC2 and DST.
All handlers are modified to support new notation. In addition fetchDecode module was modified to assign sources to instructions properly.
Immediate benefits:
- Removal of several duplicated handlers (FMA3 duplicated with FMA4 is a trivial example)
- Simpler to understand fetch-decode code
Future benefits:
- Integration of disassembler into Bochs CPU module, ability to disasm bx_instruction_c instance (planned)
Huge patch. Almost all source files wre modified.
Starting convergence to new lazy flags scheme by Darek Mihocka (www.emulators.com). The new flags code is still being validated and perfected but I try to minimize the diff between 2 versionS
Averything that required cpu.h include now has it explicitly and there are a lot of files not dependant by CPU at all which will compile a lot faster now ...
Manual says that GP(0) shouldd be generated in this case ALWAYS
Fixed instructions PANIC messages to ERROR for this case
And ... do not leave PANIC messages w/o taking care that user could push CONTINUE button and program should know to continue after the PANIC code line. Mainly in rerurn instructions were several problems ...
also extended by the REX.B field on Hammer) is passed to instructions.
I rearranged the bxInstruction_c to free up a field to be used
to pass this info when mod-rm bytes are not used. This got rid
of the ugly ((i->b1 & 7) + i->rex_b) code.
Probably shaved just a very little run time off Hammer emulation,
and even less on x86-32. The resultant is a little cleaner anyways.
in cpu.cc out of the main loop, and into the asynchronous
events handling. I went through all the code paths, and
there doesn't seem to be any reason for that code to be
in the hot loop.
Added another accessor for getting instruction data, called
modC0(). A lot of instructions test whether the mod field
of mod-nnn-rm is 0xc0 or not, ie., it's a register operation
and not memory. So I flag this in fetchdecode{,64}.cc.
This added on the order of 1% performance improvement for
a Win95 boot.
Macroized a few leftover calls to Write_RMV_virtual_xyz()
that didn't get modified in the x86-64 merge. Really, they
just call the real function for now, but I want to have them
available to do direct writes with the guest2host TLB pointers.
to bitfields. bxInstruction_c is now 24 bytes, including 4 for
the memory addr resolution function pointer, and 4 for the
execution function pointer (16 + 4 + 4).
Coded more accessors, to abstract access from most code.