- RTC 12-hour mode implemented

- unsupported shutdown status values no longer cause a panic
- definition of BX_NUM_CMOS_REGS moved from config.h to cmos.h (TODO: get rid
  of this and implement 128 registers)
- indent mode fixed in modified section
This commit is contained in:
Volker Ruppert 2005-09-10 13:22:51 +00:00
parent f9e7aa39af
commit fd427df0d7
3 changed files with 230 additions and 224 deletions

View File

@ -182,10 +182,6 @@
// if set to 0, the simulation will panic.
#define BX_RESET_ON_TRIPLE_FAULT 1
// Number of CMOS registers
#define BX_NUM_CMOS_REGS 64
//#define BX_NUM_CMOS_REGS 128
// Use Greg Alexander's new PIT model (summer 2001) instead of the original.
#define BX_USE_NEW_PIT 0

View File

@ -1,5 +1,5 @@
/////////////////////////////////////////////////////////////////////////
// $Id: cmos.cc,v 1.45 2004-06-19 15:20:10 sshwarts Exp $
// $Id: cmos.cc,v 1.46 2005-09-10 13:22:51 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
@ -78,7 +78,7 @@ bx_cmos_c *theCmosDevice = NULL;
#if (BX_NUM_CMOS_REGS == 64)
#elif (BX_NUM_CMOS_REGS == 128)
#else
#error "Invalid BX_NUM_CMOS_REGS value in config.h"
#error "Invalid BX_NUM_CMOS_REGS value in cmos.h"
#endif
@ -118,7 +118,7 @@ bx_cmos_c::~bx_cmos_c(void)
void
bx_cmos_c::init(void)
{
BX_DEBUG(("Init $Id: cmos.cc,v 1.45 2004-06-19 15:20:10 sshwarts Exp $"));
BX_DEBUG(("Init $Id: cmos.cc,v 1.46 2005-09-10 13:22:51 vruppert Exp $"));
// CMOS RAM & RTC
DEV_register_ioread_handler(this, read_handler, 0x0070, "CMOS RAM", 1);
@ -195,6 +195,7 @@ bx_cmos_c::init(void)
BX_INFO(("Setting initial clock to: %s (time0=%u)", tmptime, (Bit32u)BX_CMOS_THIS s.timeval));
BX_CMOS_THIS s.rtc_mode_12hour = 0;
update_clock();
BX_CMOS_THIS s.timeval_change = 0;
@ -228,8 +229,7 @@ bx_cmos_c::init(void)
close(fd);
BX_INFO(("successfuly read from image file '%s'.",
bx_options.cmos.Opath->getptr ()));
}
else {
} else {
// CMOS values generated
BX_CMOS_THIS s.reg[REG_STAT_A] = 0x26;
BX_CMOS_THIS s.reg[REG_STAT_B] = 0x02;
@ -238,7 +238,7 @@ bx_cmos_c::init(void)
#if BX_SUPPORT_FPU == 1
BX_CMOS_THIS s.reg[REG_EQUIPMENT_BYTE] |= 0x02;
#endif
}
}
}
void
@ -366,10 +366,7 @@ bx_cmos_c::write(Bit32u address, Bit32u value, unsigned io_len)
UNUSED(this_ptr);
#endif // !BX_USE_CMOS_SMF
if (bx_dbg.cmos)
BX_INFO(("CMOS write to address: 0x%04x = 0x%02x",
(unsigned) address, (unsigned) value));
BX_DEBUG(("CMOS write to address: 0x%04x = 0x%02x", address, value));
switch (address) {
case 0x0070:
@ -382,230 +379,222 @@ bx_cmos_c::write(Bit32u address, Bit32u value, unsigned io_len)
case 0x0071:
if (BX_CMOS_THIS s.cmos_mem_address >= BX_NUM_CMOS_REGS) {
BX_PANIC(("unsupported cmos io write, register(0x%02x) = 0x%02x !",
(unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value));
return;
}
BX_PANIC(("unsupported cmos io write, register(0x%02x) = 0x%02x !",
(unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value));
return;
}
switch (BX_CMOS_THIS s.cmos_mem_address) {
case REG_SEC_ALARM: // seconds alarm
case REG_MIN_ALARM: // minutes alarm
case REG_HOUR_ALARM: // hours alarm
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
BX_DEBUG(("alarm time changed to %02x:%02x:%02x", BX_CMOS_THIS s.reg[REG_HOUR_ALARM],
BX_CMOS_THIS s.reg[REG_MIN_ALARM], BX_CMOS_THIS s.reg[REG_SEC_ALARM]));
return;
break;
case REG_SEC_ALARM: // seconds alarm
case REG_MIN_ALARM: // minutes alarm
case REG_HOUR_ALARM: // hours alarm
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
BX_DEBUG(("alarm time changed to %02x:%02x:%02x", BX_CMOS_THIS s.reg[REG_HOUR_ALARM],
BX_CMOS_THIS s.reg[REG_MIN_ALARM], BX_CMOS_THIS s.reg[REG_SEC_ALARM]));
break;
case REG_SEC: // seconds
case REG_MIN: // minutes
case REG_HOUR: // hours
case REG_WEEK_DAY: // day of the week
case REG_MONTH_DAY: // day of the month
case REG_MONTH: // month
case REG_YEAR: // year
case REG_IBM_CENTURY_BYTE: // century
case REG_IBM_PS2_CENTURY_BYTE: // century (PS/2)
//BX_INFO(("write reg 0x%02x: value = 0x%02x",
// (unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value);
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
if (BX_CMOS_THIS s.cmos_mem_address == REG_IBM_PS2_CENTURY_BYTE) {
BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE] = value;
}
if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x80) {
BX_CMOS_THIS s.timeval_change = 1;
} else {
update_timeval();
}
return;
break;
case REG_SEC: // seconds
case REG_MIN: // minutes
case REG_HOUR: // hours
case REG_WEEK_DAY: // day of the week
case REG_MONTH_DAY: // day of the month
case REG_MONTH: // month
case REG_YEAR: // year
case REG_IBM_CENTURY_BYTE: // century
case REG_IBM_PS2_CENTURY_BYTE: // century (PS/2)
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
if (BX_CMOS_THIS s.cmos_mem_address == REG_IBM_PS2_CENTURY_BYTE) {
BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE] = value;
}
if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x80) {
BX_CMOS_THIS s.timeval_change = 1;
} else {
update_timeval();
}
break;
case REG_STAT_A: // Control Register A
// bit 7: Update in Progress (read-only)
// 1 = signifies time registers will be updated within 244us
// 0 = time registers will not occur before 244us
// note: this bit reads 0 when CRB bit 7 is 1
// bit 6..4: Divider Chain Control
// 000 oscillator disabled
// 001 oscillator disabled
// 010 Normal operation
// 011 TEST
// 100 TEST
// 101 TEST
// 110 Divider Chain RESET
// 111 Divider Chain RESET
// bit 3..0: Periodic Interrupt Rate Select
// 0000 None
// 0001 3.90625 ms
// 0010 7.8125 ms
// 0011 122.070 us
// 0100 244.141 us
// 0101 488.281 us
// 0110 976.562 us
// 0111 1.953125 ms
// 1000 3.90625 ms
// 1001 7.8125 ms
// 1010 15.625 ms
// 1011 31.25 ms
// 1100 62.5 ms
// 1101 125 ms
// 1110 250 ms
// 1111 500 ms
case REG_STAT_A: // Control Register A
// bit 7: Update in Progress (read-only)
// 1 = signifies time registers will be updated within 244us
// 0 = time registers will not occur before 244us
// note: this bit reads 0 when CRB bit 7 is 1
// bit 6..4: Divider Chain Control
// 000 oscillator disabled
// 001 oscillator disabled
// 010 Normal operation
// 011 TEST
// 100 TEST
// 101 TEST
// 110 Divider Chain RESET
// 111 Divider Chain RESET
// bit 3..0: Periodic Interrupt Rate Select
// 0000 None
// 0001 3.90625 ms
// 0010 7.8125 ms
// 0011 122.070 us
// 0100 244.141 us
// 0101 488.281 us
// 0110 976.562 us
// 0111 1.953125 ms
// 1000 3.90625 ms
// 1001 7.8125 ms
// 1010 15.625 ms
// 1011 31.25 ms
// 1100 62.5 ms
// 1101 125 ms
// 1110 250 ms
// 1111 500 ms
unsigned dcc;
dcc = (value >> 4) & 0x07;
if ((dcc & 0x06) == 0x06) {
BX_INFO(("CRA: divider chain RESET"));
} else if (dcc != 0x02) {
BX_PANIC(("CRA: divider chain control 0x%02x", dcc));
}
BX_CMOS_THIS s.reg[REG_STAT_A] &= 0x80;
BX_CMOS_THIS s.reg[REG_STAT_A] |= (value & 0x7f);
BX_CMOS_THIS CRA_change();
return;
break;
unsigned dcc;
dcc = (value >> 4) & 0x07;
if ((dcc & 0x06) == 0x06) {
BX_INFO(("CRA: divider chain RESET"));
} else if (dcc != 0x02) {
BX_PANIC(("CRA: divider chain control 0x%02x", dcc));
}
BX_CMOS_THIS s.reg[REG_STAT_A] &= 0x80;
BX_CMOS_THIS s.reg[REG_STAT_A] |= (value & 0x7f);
BX_CMOS_THIS CRA_change();
break;
case REG_STAT_B: // Control Register B
// bit 0: Daylight Savings Enable
// 1 = enable daylight savings
// 0 = disable daylight savings
// bit 1: 24/12 houre mode
// 1 = 24 hour format
// 0 = 12 hour format
// bit 2: Data Mode
// 1 = binary format
// 0 = BCD format
// bit 3: "square wave enable"
// Not supported and always read as 0
// bit 4: Update Ended Interrupt Enable
// 1 = enable generation of update ended interrupt
// 0 = disable
// bit 5: Alarm Interrupt Enable
// 1 = enable generation of alarm interrupt
// 0 = disable
// bit 6: Periodic Interrupt Enable
// 1 = enable generation of periodic interrupt
// 0 = disable
// bit 7: Set mode
// 1 = user copy of time is "frozen" allowing time registers
// to be accessed without regard for an occurance of an update
// 0 = time updates occur normally
case REG_STAT_B: // Control Register B
// bit 0: Daylight Savings Enable
// 1 = enable daylight savings
// 0 = disable daylight savings
// bit 1: 24/12 hour mode
// 1 = 24 hour format
// 0 = 12 hour format
// bit 2: Data Mode
// 1 = binary format
// 0 = BCD format
// bit 3: "square wave enable"
// Not supported and always read as 0
// bit 4: Update Ended Interrupt Enable
// 1 = enable generation of update ended interrupt
// 0 = disable
// bit 5: Alarm Interrupt Enable
// 1 = enable generation of alarm interrupt
// 0 = disable
// bit 6: Periodic Interrupt Enable
// 1 = enable generation of periodic interrupt
// 0 = disable
// bit 7: Set mode
// 1 = user copy of time is "frozen" allowing time registers
// to be accessed without regard for an occurance of an update
// 0 = time updates occur normally
// can not handle binary or 12-hour mode yet.
if (value & 0x04)
BX_PANIC(("write status reg B, binary format enabled."));
if ( !(value & 0x02) )
BX_PANIC(("write status reg B, 12 hour mode enabled."));
if (value & 0x04)
BX_PANIC(("write status reg B, binary format enabled."));
value &= 0xf7; // bit3 always 0
// Note: setting bit 7 clears bit 4
if (value & 0x80)
value &= 0xef;
value &= 0xf7; // bit3 always 0
// Note: setting bit 7 clears bit 4
if (value & 0x80)
value &= 0xef;
unsigned prev_CRB;
prev_CRB = BX_CMOS_THIS s.reg[REG_STAT_B];
BX_CMOS_THIS s.reg[REG_STAT_B] = value;
if ( (prev_CRB & 0x40) != (value & 0x40) ) {
// Periodic Interrupt Enabled changed
if (prev_CRB & 0x40) {
// transition from 1 to 0, deactivate timer
bx_pc_system.deactivate_timer(
BX_CMOS_THIS s.periodic_timer_index);
}
else {
// transition from 0 to 1
// if rate select is not 0, activate timer
if ( (BX_CMOS_THIS s.reg[REG_STAT_A] & 0x0f) != 0 ) {
bx_pc_system.activate_timer(
BX_CMOS_THIS s.periodic_timer_index,
BX_CMOS_THIS s.periodic_interval_usec, 1);
}
}
}
if ( (prev_CRB >= 0x80) && (value < 0x80) && BX_CMOS_THIS s.timeval_change) {
update_timeval();
BX_CMOS_THIS s.timeval_change = 0;
}
return;
break;
unsigned prev_CRB;
prev_CRB = BX_CMOS_THIS s.reg[REG_STAT_B];
BX_CMOS_THIS s.reg[REG_STAT_B] = value;
if ( (prev_CRB & 0x02) != (value & 0x02) ) {
BX_CMOS_THIS s.rtc_mode_12hour = ((value & 0x02) == 0);
update_clock();
}
if ((prev_CRB & 0x40) != (value & 0x40)) {
// Periodic Interrupt Enabled changed
if (prev_CRB & 0x40) {
// transition from 1 to 0, deactivate timer
bx_pc_system.deactivate_timer(BX_CMOS_THIS s.periodic_timer_index);
} else {
// transition from 0 to 1
// if rate select is not 0, activate timer
if ((BX_CMOS_THIS s.reg[REG_STAT_A] & 0x0f) != 0) {
bx_pc_system.activate_timer(
BX_CMOS_THIS s.periodic_timer_index,
BX_CMOS_THIS s.periodic_interval_usec, 1);
}
}
}
if ((prev_CRB >= 0x80) && (value < 0x80) && BX_CMOS_THIS s.timeval_change) {
update_timeval();
BX_CMOS_THIS s.timeval_change = 0;
}
break;
case REG_STAT_C: // Control Register C
case REG_STAT_D: // Control Register D
BX_ERROR(("write to control register 0x%02x (read-only)",
BX_CMOS_THIS s.cmos_mem_address));
break;
case REG_STAT_C: // Control Register C
case REG_STAT_D: // Control Register D
BX_ERROR(("write to control register 0x%02x ignored (read-only)",
BX_CMOS_THIS s.cmos_mem_address));
break;
case REG_DIAGNOSTIC_STATUS:
BX_DEBUG(("write register 0x0e: 0x%02x", (unsigned) value));
break;
case REG_DIAGNOSTIC_STATUS:
BX_DEBUG(("write register 0x0e: 0x%02x", value));
BX_CMOS_THIS s.reg[REG_DIAGNOSTIC_STATUS] = value;
break;
case REG_SHUTDOWN_STATUS:
switch (value) {
case 0x00: /* proceed with normal POST (soft reset) */
BX_DEBUG(("Reg 0Fh(00): shutdown action = normal POST"));
break;
case 0x01: /* shutdown after memory size check */
BX_DEBUG(("Reg 0Fh(01): request to change shutdown action"
case REG_SHUTDOWN_STATUS:
switch (value) {
case 0x00: /* proceed with normal POST (soft reset) */
BX_DEBUG(("Reg 0Fh(00): shutdown action = normal POST"));
break;
case 0x01: /* shutdown after memory size check */
BX_DEBUG(("Reg 0Fh(01): request to change shutdown action"
" to shutdown after memory size check"));
case 0x02: /* shutdown after successful memory test */
BX_DEBUG(("Reg 0Fh(02): request to change shutdown action"
break;
case 0x02: /* shutdown after successful memory test */
BX_DEBUG(("Reg 0Fh(02): request to change shutdown action"
" to shutdown after successful memory test"));
break;
case 0x03: /* shutdown after failed memory test */
BX_DEBUG(("Reg 0Fh(03): request to change shutdown action"
break;
case 0x03: /* shutdown after failed memory test */
BX_DEBUG(("Reg 0Fh(03): request to change shutdown action"
" to shutdown after successful memory test"));
break;
case 0x04: /* jump to disk bootstrap routine */
BX_DEBUG(("Reg 0Fh(04): request to change shutdown action "
break;
case 0x04: /* jump to disk bootstrap routine */
BX_DEBUG(("Reg 0Fh(04): request to change shutdown action "
"to jump to disk bootstrap routine."));
break;
case 0x05: /* flush keyboard (issue EOI) and jump via 40h:0067h */
BX_DEBUG(("Reg 0Fh(05): request to change shutdown action "
break;
case 0x05: /* flush keyboard (issue EOI) and jump via 40h:0067h */
BX_DEBUG(("Reg 0Fh(05): request to change shutdown action "
"to flush keyboard (issue EOI) and jump via 40h:0067h."));
break;
case 0x06:
BX_DEBUG(("Reg 0Fh(06): Shutdown after memory test !"));
break;
case 0x07: /* reset (after failed test in virtual mode) */
BX_DEBUG(("Reg 0Fh(07): request to change shutdown action "
break;
case 0x06:
BX_DEBUG(("Reg 0Fh(06): Shutdown after memory test !"));
break;
case 0x07: /* reset (after failed test in virtual mode) */
BX_DEBUG(("Reg 0Fh(07): request to change shutdown action "
"to reset (after failed test in virtual mode)."));
break;
case 0x08: /* used by POST during protected-mode RAM test (return to POST) */
BX_DEBUG(("Reg 0Fh(08): request to change shutdown action "
break;
case 0x08: /* used by POST during protected-mode RAM test (return to POST) */
BX_DEBUG(("Reg 0Fh(08): request to change shutdown action "
"to return to POST (used by POST during protected-mode RAM test)."));
break;
case 0x09: /* return to BIOS extended memory block move
break;
case 0x09: /* return to BIOS extended memory block move
(interrupt 15h, func 87h was in progress) */
BX_DEBUG(("Reg 0Fh(09): request to change shutdown action "
BX_DEBUG(("Reg 0Fh(09): request to change shutdown action "
"to return to BIOS extended memory block move."));
break;
case 0x0a: /* jump to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0a): request to change shutdown action"
break;
case 0x0a: /* jump to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0a): request to change shutdown action"
" to jump to DWORD at 40:67"));
break;
case 0x0b: /* iret to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0b): request to change shutdown action"
break;
case 0x0b: /* iret to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0b): request to change shutdown action"
" to iret to DWORD at 40:67"));
break;
case 0x0c: /* retf to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0c): request to change shutdown action"
break;
case 0x0c: /* retf to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0c): request to change shutdown action"
" to retf to DWORD at 40:67"));
break;
default:
BX_PANIC(("unsupported cmos io write to reg F, case 0x%02x!",
(unsigned) value));
break;
}
break;
break;
default:
BX_ERROR(("unsupported shutdown status: 0x%02x!", value));
}
BX_CMOS_THIS s.reg[REG_SHUTDOWN_STATUS] = value;
break;
default:
BX_DEBUG(("write reg 0x%02x: value = 0x%02x",
(unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value));
break;
}
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
default:
BX_DEBUG(("write reg 0x%02x: value = 0x%02x",
BX_CMOS_THIS s.cmos_mem_address, value));
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
}
break;
}
}
}
@ -725,7 +714,7 @@ bx_cmos_c::update_clock()
{
struct tm *time_calendar;
unsigned year, month, day, century;
Bit8u val_bcd;
Bit8u val_bcd, hour;
time_calendar = localtime(& BX_CMOS_THIS s.timeval);
@ -742,9 +731,17 @@ bx_cmos_c::update_clock()
BX_CMOS_THIS s.reg[REG_MIN] = val_bcd;
// update hours
val_bcd =
((time_calendar->tm_hour / 10) << 4) |
(time_calendar->tm_hour % 10);
if (BX_CMOS_THIS s.rtc_mode_12hour) {
hour = time_calendar->tm_hour;
val_bcd = (hour > 11) ? 0x80 : 0x00;
if (hour > 11) hour -= 12;
if (hour == 0) hour = 12;
val_bcd |= ((hour / 10) << 4) | (hour % 10);
} else {
val_bcd =
((time_calendar->tm_hour / 10) << 4) |
(time_calendar->tm_hour % 10);
}
BX_CMOS_THIS s.reg[REG_HOUR] = val_bcd;
// update day of the week
@ -778,7 +775,7 @@ bx_cmos_c::update_clock()
bx_cmos_c::update_timeval()
{
struct tm time_calendar;
Bit8u val_bin;
Bit8u val_bin, pm_flag;
// update seconds
val_bin =
@ -793,9 +790,21 @@ bx_cmos_c::update_timeval()
time_calendar.tm_min = val_bin;
// update hours
val_bin =
((BX_CMOS_THIS s.reg[REG_HOUR] >> 4) * 10) +
(BX_CMOS_THIS s.reg[REG_HOUR] & 0x0f);
if (BX_CMOS_THIS s.rtc_mode_12hour) {
pm_flag = BX_CMOS_THIS s.reg[REG_HOUR] & 0x80;
val_bin =
(((BX_CMOS_THIS s.reg[REG_HOUR] & 0x70) >> 4) * 10) +
(BX_CMOS_THIS s.reg[REG_HOUR] & 0x0f);
if ((val_bin < 12) & (pm_flag > 0)) {
val_bin += 12;
} else if ((val_bin == 12) & (pm_flag == 0)) {
val_bin = 0;
}
} else {
val_bin =
((BX_CMOS_THIS s.reg[REG_HOUR] >> 4) * 10) +
(BX_CMOS_THIS s.reg[REG_HOUR] & 0x0f);
}
time_calendar.tm_hour = val_bin;
// update day of the month

View File

@ -1,5 +1,5 @@
/////////////////////////////////////////////////////////////////////////
// $Id: cmos.h,v 1.9 2003-01-04 00:02:07 vruppert Exp $
// $Id: cmos.h,v 1.10 2005-09-10 13:22:51 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
@ -25,8 +25,8 @@
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// Number of CMOS registers (64 or 128)
#define BX_NUM_CMOS_REGS 64
#if BX_USE_CMOS_SMF
# define BX_CMOS_SMF static
@ -64,6 +64,7 @@ public:
time_t timeval;
Bit8u cmos_mem_address;
bx_bool timeval_change;
bx_bool rtc_mode_12hour;
Bit8u reg[BX_NUM_CMOS_REGS];
} s; // state information