introduce memory stub class which manages *only* RAM related logic of the memory

it is very useful for CPU unit testing without devices or BIOS
This commit is contained in:
Stanislav Shwartsman 2023-11-10 21:08:57 +02:00
parent 1e92d9ee4e
commit 4cafebcd4c
5 changed files with 653 additions and 456 deletions

View File

@ -40,7 +40,7 @@ RANLIB = @RANLIB@
BX_INCDIRS = -I.. -I$(srcdir)/.. -I../@INSTRUMENT_DIR@ -I$(srcdir)/../@INSTRUMENT_DIR@
BX_OBJS = \
memory.o misc_mem.o
memory.o memory_stub.o misc_mem.o
BX_INCLUDES = ../bochs.h ../config.h
@ -79,6 +79,15 @@ memory.o: memory.@CPP_SUFFIX@ ../bochs.h ../config.h ../osdep.h ../logio.h \
../cpu/access.h ../iodev/iodev.h ../plugin.h ../extplugin.h \
../param_names.h ../pc_system.h ../memory/memory-bochs.h \
../gui/siminterface.h ../gui/paramtree.h ../gui/gui.h
memory_stub.o: memory_stub.@CPP_SUFFIX@ ../bochs.h ../config.h ../osdep.h \
../logio.h ../misc/bswap.h ../pc_system.h ../param_names.h ../cpu/cpu.h \
../bx_debug/debug.h ../config.h ../osdep.h ../cpu/decoder/decoder.h \
../cpu/decoder/features.h ../instrument/stubs/instrument.h ../cpu/i387.h \
../cpu/fpu/softfloat.h ../cpu/fpu/tag_w.h ../cpu/fpu/status_w.h \
../cpu/fpu/control_w.h ../cpu/crregs.h ../cpu/descriptor.h \
../cpu/decoder/instr.h ../cpu/lazy_flags.h ../cpu/tlb.h ../cpu/icache.h \
../cpu/apic.h ../cpu/xmm.h ../cpu/vmx.h ../cpu/svm.h ../cpu/cpuid.h \
../cpu/access.h ../memory/memory-bochs.h
misc_mem.o: misc_mem.@CPP_SUFFIX@ ../bochs.h ../config.h ../osdep.h ../logio.h \
../misc/bswap.h ../param_names.h ../cpu/cpu.h ../bx_debug/debug.h \
../config.h ../osdep.h ../cpu/decoder/decoder.h \

View File

@ -2,7 +2,7 @@
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2021 The Bochs Project
// Copyright (C) 2001-2023 The Bochs Project
//
// I/O memory handlers API Copyright (C) 2003 by Frank Cornelis
//
@ -42,6 +42,73 @@ const Bit32u EXROMSIZE = (0x20000); // ROMs 0xc0000-0xdffff (area 0xe0000-0xf
const Bit32u BIOS_MASK = BIOSROMSZ-1;
const Bit32u EXROM_MASK = EXROMSIZE-1;
class BOCHSAPI BX_MEMORY_STUB_C : public logfunctions {
protected:
Bit64u len, allocated; // could be > 4G
Bit32u block_size; // individual block size, must be power of 2
Bit8u *actual_vector;
Bit8u *vector; // aligned correctly
Bit8u **blocks;
Bit8u *rom; // 512k BIOS rom space + 128k expansion rom space
Bit8u *bogus; // 4k for unexisting memory
Bit32u used_blocks;
#if BX_LARGE_RAMFILE
static Bit8u * const swapped_out; // NULL; // (NULL - sizeof(Bit8u));
Bit32u next_swapout_idx;
FILE *overflow_file;
BX_MEM_SMF void read_block(Bit32u block);
#endif
public:
BX_MEMORY_STUB_C();
virtual ~BX_MEMORY_STUB_C();
BX_MEM_SMF void init_memory(Bit64u guest, Bit64u host, Bit32u block_size);
BX_MEM_SMF void cleanup_memory(void);
BX_MEM_SMF Bit8u* get_vector(bx_phy_address addr);
BX_MEM_SMF Bit8u* getHostMemAddr(BX_CPU_C *cpu, bx_phy_address addr, unsigned rw);
// Note: accesses should always be contained within a single page
BX_MEM_SMF void readPhysicalPage(BX_CPU_C *cpu, bx_phy_address addr,
unsigned len, void *data);
BX_MEM_SMF void writePhysicalPage(BX_CPU_C *cpu, bx_phy_address addr,
unsigned len, void *data);
BX_MEM_SMF bool dbg_fetch_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf);
#if (BX_DEBUGGER || BX_GDBSTUB)
BX_MEM_SMF bool dbg_set_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf);
BX_MEM_SMF bool dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc);
#endif
BX_MEM_SMF Bit64u get_memory_len(void);
BX_MEM_SMF void allocate_block(Bit32u index);
BX_MEM_SMF Bit8u* alloc_vector_aligned(Bit64u bytes, Bit64u alignment);
#if BX_SUPPORT_MONITOR_MWAIT
BX_MEM_SMF bool is_monitor(bx_phy_address begin_addr, unsigned len);
BX_MEM_SMF void check_monitor(bx_phy_address addr, unsigned len);
#endif
};
typedef bool (*memory_handler_t)(bx_phy_address addr, unsigned len, void *data, void *param);
// return a pointer to 4K region containing <addr> or NULL if direct access is not allowed
// same format as getHostMemAddr method
typedef Bit8u* (*memory_direct_access_handler_t)(bx_phy_address addr, unsigned rw, void *param);
struct memory_handler_struct {
struct memory_handler_struct *next;
void *param;
bx_phy_address begin;
bx_phy_address end;
Bit16u bitmap;
memory_handler_t read_handler;
memory_handler_t write_handler;
memory_direct_access_handler_t da_handler;
};
#define BIOS_MAP_LAST128K(addr) (((addr) | 0xfff00000) & BIOS_MASK)
#define BIOS_ROM_LOWER 0x01
@ -64,38 +131,16 @@ enum memory_area_t {
BX_MEM_AREA_F0000
};
typedef bool (*memory_handler_t)(bx_phy_address addr, unsigned len, void *data, void *param);
// return a pointer to 4K region containing <addr> or NULL if direct access is not allowed
// same format as getHostMemAddr method
typedef Bit8u* (*memory_direct_access_handler_t)(bx_phy_address addr, unsigned rw, void *param);
struct memory_handler_struct {
struct memory_handler_struct *next;
void *param;
bx_phy_address begin;
bx_phy_address end;
Bit16u bitmap;
memory_handler_t read_handler;
memory_handler_t write_handler;
memory_direct_access_handler_t da_handler;
};
class BOCHSAPI BX_MEM_C : public logfunctions {
class BOCHSAPI BX_MEM_C : public BX_MEMORY_STUB_C {
private:
struct memory_handler_struct **memory_handlers;
bool pci_enabled;
bool bios_write_enabled;
bool smram_available;
bool smram_enable;
bool smram_restricted;
Bit64u len, allocated; // could be > 4G
Bit32u block_size; // individual block size, must be power of 2
Bit8u *actual_vector;
Bit8u *vector; // aligned correctly
Bit8u **blocks;
Bit8u *rom; // 512k BIOS rom space + 128k expansion rom space
Bit8u *bogus; // 4k for unexisting memory
bool rom_present[65];
bool memory_type[13][2];
Bit32u bios_rom_addr;
@ -104,28 +149,19 @@ private:
Bit8u flash_status;
Bit8u flash_wsm_state;
Bit32u used_blocks;
#if BX_LARGE_RAMFILE
static Bit8u * const swapped_out; // NULL; // (NULL - sizeof(Bit8u));
Bit32u next_swapout_idx;
FILE *overflow_file;
BX_MEM_SMF void read_block(Bit32u block);
#endif
BX_MEM_SMF Bit8u flash_read(Bit32u addr);
BX_MEM_SMF void flash_write(Bit32u addr, Bit8u data);
public:
BX_MEM_C();
~BX_MEM_C();
virtual ~BX_MEM_C();
BX_MEM_SMF void init_memory(Bit64u guest, Bit64u host, Bit32u block_size);
BX_MEM_SMF void cleanup_memory(void);
BX_MEM_SMF Bit8u* get_vector(bx_phy_address addr);
BX_MEM_SMF void enable_smram(bool enable, bool restricted);
BX_MEM_SMF void disable_smram(void);
BX_MEM_SMF bool is_smram_accessible(void);
BX_MEM_SMF bool is_smram_accessible(void);
BX_MEM_SMF void set_bios_write(bool enabled);
BX_MEM_SMF void set_bios_rom_access(Bit8u region, bool enabled);
@ -148,7 +184,6 @@ public:
BX_MEM_SMF bool dbg_fetch_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf);
#if (BX_DEBUGGER || BX_GDBSTUB)
BX_MEM_SMF bool dbg_set_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf);
BX_MEM_SMF bool dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc);
#endif
BX_MEM_SMF bool registerMemoryHandlers(void *param, memory_handler_t read_handler,
@ -162,34 +197,15 @@ public:
}
BX_MEM_SMF bool unregisterMemoryHandlers(void *param, bx_phy_address begin_addr, bx_phy_address end_addr);
BX_MEM_SMF Bit64u get_memory_len(void);
BX_MEM_SMF void allocate_block(Bit32u index);
BX_MEM_SMF Bit8u* alloc_vector_aligned(Bit64u bytes, Bit64u alignment);
#if BX_SUPPORT_MONITOR_MWAIT
BX_MEM_SMF bool is_monitor(bx_phy_address begin_addr, unsigned len);
BX_MEM_SMF void check_monitor(bx_phy_address addr, unsigned len);
#endif
void register_state(void);
#if BX_LARGE_RAMFILE
friend void ramfile_save_handler(void *devptr, FILE *fp);
#endif
friend Bit64s memory_param_save_handler(void *devptr, bx_param_c *param);
friend void memory_param_restore_handler(void *devptr, bx_param_c *param, Bit64s val);
};
BOCHSAPI extern BX_MEM_C bx_mem;
/*
BX_CPP_INLINE Bit8u* BX_MEM_C::get_vector(bx_phy_address addr)
{
return (BX_MEM_THIS vector + addr);
}
*/
BX_CPP_INLINE Bit64u BX_MEM_C::get_memory_len(void)
{
return (BX_MEM_THIS len);
}
#endif

View File

@ -89,27 +89,8 @@ mem_write:
// all of data is within limits of physical memory
if (a20addr < 0x000a0000 || a20addr >= 0x00100000)
{
if (len == 8) {
pageWriteStampTable.decWriteStamp(a20addr, 8);
WriteHostQWordToLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr), *(Bit64u*)data);
return;
}
if (len == 4) {
pageWriteStampTable.decWriteStamp(a20addr, 4);
WriteHostDWordToLittleEndian((Bit32u*) BX_MEM_THIS get_vector(a20addr), *(Bit32u*)data);
return;
}
if (len == 2) {
pageWriteStampTable.decWriteStamp(a20addr, 2);
WriteHostWordToLittleEndian((Bit16u*) BX_MEM_THIS get_vector(a20addr), *(Bit16u*)data);
return;
}
if (len == 1) {
pageWriteStampTable.decWriteStamp(a20addr, 1);
* (BX_MEM_THIS get_vector(a20addr)) = * (Bit8u *) data;
return;
}
// len == other, just fall thru to special cases handling
BX_MEMORY_STUB_C::writePhysicalPage(cpu, addr, len, data);
return;
}
#ifdef BX_LITTLE_ENDIAN
@ -118,44 +99,10 @@ mem_write:
data_ptr = (Bit8u *) data + (len - 1);
#endif
if (a20addr < 0x000a0000 || a20addr >= 0x00100000)
{
// addr *not* in range 000A0000 .. 000FFFFF
while(1) {
// Write in chunks of 8 bytes if we can
if ((len & 7) == 0) {
pageWriteStampTable.decWriteStamp(a20addr, 8);
WriteHostQWordToLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr), *(Bit64u*)data_ptr);
len -= 8;
a20addr += 8;
#ifdef BX_LITTLE_ENDIAN
data_ptr += 8;
#else
data_ptr -= 8;
#endif
if (len == 0) return;
} else {
pageWriteStampTable.decWriteStamp(a20addr, 1);
*(BX_MEM_THIS get_vector(a20addr)) = *data_ptr;
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
}
pageWriteStampTable.decWriteStamp(a20addr);
// addr must be in range 000A0000 .. 000FFFFF
for(unsigned i=0; i<len; i++) {
// SMMRAM
if (a20addr < 0x000c0000) {
// devices are not allowed to access SMMRAM under VGA memory
@ -273,23 +220,8 @@ mem_read:
// all of data is within limits of physical memory
if (a20addr < 0x000a0000 || a20addr >= 0x00100000)
{
if (len == 8) {
* (Bit64u*) data = ReadHostQWordFromLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 4) {
* (Bit32u*) data = ReadHostDWordFromLittleEndian((Bit32u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 2) {
* (Bit16u*) data = ReadHostWordFromLittleEndian((Bit16u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 1) {
* (Bit8u *) data = * (BX_MEM_THIS get_vector(a20addr));
return;
}
// len == other case can just fall thru to special cases handling
BX_MEMORY_STUB_C::readPhysicalPage(cpu, addr, len, data);
return;
}
#ifdef BX_LITTLE_ENDIAN
@ -298,38 +230,7 @@ mem_read:
data_ptr = (Bit8u *) data + (len - 1);
#endif
if (a20addr < 0x000a0000 || a20addr >= 0x00100000)
{
// addr *not* in range 000A0000 .. 000FFFFF
while(1) {
// Read in chunks of 8 bytes if we can
if ((len & 7) == 0) {
*((Bit64u*)data_ptr) = ReadHostQWordFromLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr));
len -= 8;
a20addr += 8;
#ifdef BX_LITTLE_ENDIAN
data_ptr += 8;
#else
data_ptr -= 8;
#endif
if (len == 0) return;
} else {
*data_ptr = *(BX_MEM_THIS get_vector(a20addr));
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
}
// addr must be in range 000A0000 .. 000FFFFF
for (unsigned i=0; i<len; i++) {
// SMMRAM

542
bochs/memory/memory_stub.cc Normal file
View File

@ -0,0 +1,542 @@
/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2023 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "pc_system.h"
#include "param_names.h"
#include "cpu/cpu.h"
#include "memory/memory-bochs.h"
#define LOG_THIS BX_MEM(0)->
// block size must be power of two
BX_CPP_INLINE bool is_power_of_2(Bit64u x)
{
return (x & (x - 1)) == 0;
}
// alignment of memory vector, must be a power of 2
#define BX_MEM_VECTOR_ALIGN 4096
#if BX_LARGE_RAMFILE
Bit8u* const BX_MEMORY_STUB_C::swapped_out = ((Bit8u*)NULL - sizeof(Bit8u));
#endif
////////////////////////////////////////////////////////////////////////////////////////////////
// MEMORY_STUB class implements RAM vector only
BX_MEMORY_STUB_C::BX_MEMORY_STUB_C()
{
put("memory", "MEM0");
vector = NULL;
actual_vector = NULL;
blocks = NULL;
rom = NULL;
bogus = NULL;
len = 0;
used_blocks = 0;
allocated = 0;
#if BX_LARGE_RAMFILE
next_swapout_idx = 0;
overflow_file = NULL;
#endif
}
BX_MEMORY_STUB_C::~BX_MEMORY_STUB_C()
{
#if BX_LARGE_RAMFILE
if (overflow_file)
fclose(BX_MEM_THIS overflow_file);
#endif
cleanup_memory();
}
Bit64u BX_MEMORY_STUB_C::get_memory_len(void)
{
return (BX_MEM_THIS len);
}
Bit8u* BX_MEMORY_STUB_C::alloc_vector_aligned(Bit64u bytes, Bit64u alignment)
{
Bit64u test_mask = alignment - 1;
BX_MEM_THIS actual_vector = new Bit8u [(Bit32u)(bytes + test_mask)];
if (BX_MEM_THIS actual_vector == 0) {
BX_PANIC(("alloc_vector_aligned: unable to allocate host RAM !"));
return 0;
}
// round address forward to nearest multiple of alignment. Alignment
// MUST BE a power of two for this to work.
Bit64u masked = ((Bit64u)(BX_MEM_THIS actual_vector + test_mask)) & ~test_mask;
Bit8u *vector = (Bit8u *) masked;
// sanity check: no lost bits during pointer conversion
assert(sizeof(masked) >= sizeof(vector));
// sanity check: after realignment, everything fits in allocated space
assert(vector+bytes <= BX_MEM_THIS actual_vector+bytes+test_mask);
return vector;
}
void BX_MEMORY_STUB_C::init_memory(Bit64u guest, Bit64u host, Bit32u block_size)
{
// accept only memory size which is multiply of 1M
BX_ASSERT((host & 0xfffff) == 0);
BX_ASSERT((guest & 0xfffff) == 0);
if (! is_power_of_2(block_size)) {
BX_PANIC(("Block size %d is not power of two !", block_size));
}
if (BX_MEM_THIS actual_vector != NULL) {
BX_INFO(("freeing existing memory vector"));
delete [] BX_MEM_THIS actual_vector;
BX_MEM_THIS actual_vector = NULL;
BX_MEM_THIS vector = NULL;
BX_MEM_THIS blocks = NULL;
}
BX_MEM_THIS vector = alloc_vector_aligned(host + BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN);
BX_INFO(("allocated memory at %p. after alignment, vector=%p, block_size = %dK",
BX_MEM_THIS actual_vector, BX_MEM_THIS vector, block_size/1024));
BX_MEM_THIS len = guest;
BX_MEM_THIS allocated = host;
BX_MEM_THIS rom = &BX_MEM_THIS vector[host];
BX_MEM_THIS bogus = &BX_MEM_THIS vector[host + BIOSROMSZ + EXROMSIZE];
memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE + 4096);
BX_MEM_THIS block_size = block_size;
// block must be large enough to fit num_blocks in 32-bit
BX_ASSERT((BX_MEM_THIS len / BX_MEM_THIS block_size) <= 0xffffffff);
Bit32u num_blocks = (Bit32u)(BX_MEM_THIS len / BX_MEM_THIS block_size);
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS len / (1024.0*1024.0))));
BX_INFO(("mem block size = 0x%08x, blocks=%u", BX_MEM_THIS block_size, num_blocks));
BX_MEM_THIS blocks = new Bit8u* [num_blocks];
if (0) {
// all guest memory is allocated, just map it
for (unsigned idx = 0; idx < num_blocks; idx++) {
BX_MEM_THIS blocks[idx] = BX_MEM_THIS vector + (idx * BX_MEM_THIS block_size);
}
BX_MEM_THIS used_blocks = num_blocks;
}
else {
// host cannot allocate all requested guest memory
for (unsigned idx = 0; idx < num_blocks; idx++) {
BX_MEM_THIS blocks[idx] = NULL;
}
BX_MEM_THIS used_blocks = 0;
}
}
Bit8u* BX_MEMORY_STUB_C::get_vector(bx_phy_address addr)
{
Bit32u block = (Bit32u)(addr / BX_MEM_THIS block_size);
#if (BX_LARGE_RAMFILE)
if (!BX_MEM_THIS blocks[block] || (BX_MEM_THIS blocks[block] == BX_MEM_THIS swapped_out))
#else
if (!BX_MEM_THIS blocks[block])
#endif
allocate_block(block);
return BX_MEM_THIS blocks[block] + (Bit32u)(addr & (BX_MEM_THIS block_size-1));
}
#if BX_LARGE_RAMFILE
void BX_MEMORY_STUB_C::read_block(Bit32u block)
{
const Bit64u block_address = Bit64u(block) * BX_MEM_THIS block_size;
if (fseeko64(BX_MEM_THIS overflow_file, block_address, SEEK_SET))
BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_LL "x in memory overflow file!", block_address));
// We could legitimately get an EOF condition if we are reading the last bit of memory.ram
if ((fread(BX_MEM_THIS blocks[block], BX_MEM_THIS block_size, 1, BX_MEM_THIS overflow_file) != 1) &&
(!feof(BX_MEM_THIS overflow_file)))
BX_PANIC(("FATAL ERROR: Could not read from 0x" FMT_LL "x in memory overflow file!", block_address));
}
#endif
void BX_MEMORY_STUB_C::allocate_block(Bit32u block)
{
const Bit32u max_blocks = (Bit32u)(BX_MEM_THIS allocated / BX_MEM_THIS block_size);
#if BX_LARGE_RAMFILE
/*
* Match block to vector address
* First, see if there is any spare host memory blocks we can still freely allocate
*/
if (BX_MEM_THIS used_blocks >= max_blocks) {
Bit32u original_replacement_block = BX_MEM_THIS next_swapout_idx;
// Find a block to replace
bool used_for_tlb;
Bit8u *buffer;
do {
do {
// Wrap if necessary
if (++(BX_MEM_THIS next_swapout_idx)==((BX_MEM_THIS len)/BX_MEM_THIS block_size))
BX_MEM_THIS next_swapout_idx = 0;
if (BX_MEM_THIS next_swapout_idx == original_replacement_block)
BX_PANIC(("FATAL ERROR: Insufficient working RAM, all blocks are currently used for TLB entries!"));
buffer = BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx];
} while ((!buffer) || (buffer == BX_MEMORY_STUB_C::swapped_out));
used_for_tlb = false;
// tlb buffer check loop
const Bit8u* buffer_end = buffer+BX_MEM_THIS block_size;
// Don't replace it if any CPU is using it as a TLB entry
for (int i=0; i<BX_SMP_PROCESSORS && !used_for_tlb;i++)
used_for_tlb = BX_CPU(i)->check_addr_in_tlb_buffers(buffer, buffer_end);
} while (used_for_tlb);
// Flush the block to be replaced
bx_phy_address address = bx_phy_address(BX_MEM_THIS next_swapout_idx) * BX_MEM_THIS block_size;
// Create overflow file if it does not currently exist.
if (!BX_MEM_THIS overflow_file) {
BX_MEM_THIS overflow_file = tmpfile64();
if (!BX_MEM_THIS overflow_file)
BX_PANIC(("Unable to allocate memory overflow file"));
}
// Write swapped out block
if (fseeko64(BX_MEM_THIS overflow_file, address, SEEK_SET))
BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_PHY_ADDRX " in overflow file!", address));
if (1 != fwrite (BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx], BX_MEM_THIS block_size, 1, BX_MEM_THIS overflow_file))
BX_PANIC(("FATAL ERROR: Could not write at 0x" FMT_PHY_ADDRX " in overflow file!", address));
// Mark swapped out block
BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx] = BX_MEMORY_STUB_C::swapped_out;
BX_MEM_THIS blocks[block] = buffer;
read_block(block);
BX_DEBUG(("allocate_block: block=0x%x, replaced 0x%x", block, BX_MEM_THIS next_swapout_idx));
}
else {
BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks++ * BX_MEM_THIS block_size);
BX_DEBUG(("allocate_block: block=0x%x used 0x%x of 0x%x",
block, BX_MEM_THIS used_blocks, max_blocks));
}
#else
// Legacy default allocator
if (BX_MEM_THIS used_blocks >= max_blocks) {
BX_PANIC(("FATAL ERROR: all available memory is already allocated !"));
}
else {
BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks * BX_MEM_THIS block_size);
BX_MEM_THIS used_blocks++;
}
BX_DEBUG(("allocate_block: used_blocks=0x%x of 0x%x", BX_MEM_THIS used_blocks, max_blocks));
#endif
}
void BX_MEMORY_STUB_C::cleanup_memory()
{
if (BX_MEM_THIS vector != NULL) {
delete [] BX_MEM_THIS actual_vector;
BX_MEM_THIS actual_vector = NULL;
BX_MEM_THIS vector = NULL;
BX_MEM_THIS rom = NULL;
BX_MEM_THIS bogus = NULL;
delete [] BX_MEM_THIS blocks;
BX_MEM_THIS blocks = NULL;
BX_MEM_THIS used_blocks = 0;
BX_MEM_THIS allocated = 0;
BX_MEM_THIS len = 0;
}
}
bool BX_MEMORY_STUB_C::dbg_fetch_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf)
{
bx_phy_address a20addr = A20ADDR(addr);
bool ret = true;
for (; len>0; len--) {
if (a20addr < BX_MEM_THIS len) {
*buf = *(BX_MEM_THIS get_vector(a20addr));
}
#if BX_PHY_ADDRESS_LONG
else if (a20addr > BX_CONST64(0xffffffff)) {
*buf = 0xff;
ret = false; // error, beyond limits of memory
}
#endif
else {
*buf = 0xff;
ret = false; // error, beyond limits of memory
}
buf++;
a20addr++;
}
return ret;
}
#if BX_DEBUGGER || BX_GDBSTUB
bool BX_MEMORY_STUB_C::dbg_set_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf)
{
bx_phy_address a20addr = A20ADDR(addr);
if ((a20addr + len - 1) > BX_MEM_THIS len) {
return false; // error, beyond limits of memory
}
for (; len>0; len--) {
*(BX_MEM_THIS get_vector(a20addr)) = *buf;
buf++;
a20addr++;
}
return true;
}
bool BX_MEMORY_STUB_C::dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc)
{
*crc = 0;
if (addr1 > addr2)
return false;
if (addr2 >= BX_MEM_THIS len)
return false; // error, specified address past last phy mem addr
unsigned len = 1 + addr2 - addr1;
// do not cross 4K boundary
while(1) {
unsigned remainsInPage = 0x1000 - (addr1 & 0xfff);
unsigned access_length = (len < remainsInPage) ? len : remainsInPage;
*crc = crc32(BX_MEM_THIS get_vector(addr1), access_length);
addr1 += access_length;
len -= access_length;
}
return true;
}
#endif
//
// Return a host address corresponding to the guest physical memory
// address (with A20 already applied), given that the calling
// code will perform an 'op' operation. This address will be
// used for direct access to guest memory.
// Values of 'op' are { BX_READ, BX_WRITE, BX_EXECUTE, BX_RW }.
//
//
// The other assumption is that the calling code _only_ accesses memory
// directly within the page that encompasses the address requested.
//
Bit8u *BX_MEMORY_STUB_C::getHostMemAddr(BX_CPU_C *cpu, bx_phy_address addr, unsigned rw)
{
bx_phy_address a20addr = A20ADDR(addr);
bool write = rw & 1;
#if BX_SUPPORT_MONITOR_MWAIT
if (write && BX_MEM_THIS is_monitor(a20addr & ~((bx_phy_address)(0xfff)), 0xfff)) {
// Vetoed! Write monitored page !
return(NULL);
}
#endif
if (! write) {
if (a20addr < BX_MEM_THIS len)
return BX_MEM_THIS get_vector(a20addr);
else
// Error, requested addr is out of bounds.
return (Bit8u *) &BX_MEM_THIS bogus[a20addr & 0xfff];
}
else
{ // op == {BX_WRITE, BX_RW}
if (a20addr >= BX_MEM_THIS len)
return(NULL); // Error, requested addr is out of bounds.
return BX_MEM_THIS get_vector(a20addr);
}
}
void BX_MEMORY_STUB_C::writePhysicalPage(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data)
{
Bit8u *data_ptr;
bx_phy_address a20addr = A20ADDR(addr);
// Note: accesses should always be contained within a single page
if ((addr>>12) != ((addr+len-1)>>12)) {
BX_PANIC(("writePhysicalPage: cross page access at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len));
}
#if BX_SUPPORT_MONITOR_MWAIT
BX_MEM_THIS check_monitor(a20addr, len);
#endif
// all memory access fits in single 4K page
if (a20addr < BX_MEM_THIS len) {
// all of data is within limits of physical memory
if (len == 8) {
pageWriteStampTable.decWriteStamp(a20addr, 8);
WriteHostQWordToLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr), *(Bit64u*)data);
return;
}
if (len == 4) {
pageWriteStampTable.decWriteStamp(a20addr, 4);
WriteHostDWordToLittleEndian((Bit32u*) BX_MEM_THIS get_vector(a20addr), *(Bit32u*)data);
return;
}
if (len == 2) {
pageWriteStampTable.decWriteStamp(a20addr, 2);
WriteHostWordToLittleEndian((Bit16u*) BX_MEM_THIS get_vector(a20addr), *(Bit16u*)data);
return;
}
if (len == 1) {
pageWriteStampTable.decWriteStamp(a20addr, 1);
* (BX_MEM_THIS get_vector(a20addr)) = * (Bit8u *) data;
return;
}
// len == other, just fall thru to special cases handling
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
while(1) {
// Write in chunks of 8 bytes if we can
if ((len & 7) == 0) {
pageWriteStampTable.decWriteStamp(a20addr, 8);
WriteHostQWordToLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr), *(Bit64u*)data_ptr);
len -= 8;
a20addr += 8;
#ifdef BX_LITTLE_ENDIAN
data_ptr += 8;
#else
data_ptr -= 8;
#endif
if (len == 0) return;
} else {
pageWriteStampTable.decWriteStamp(a20addr, 1);
*(BX_MEM_THIS get_vector(a20addr)) = *data_ptr;
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
pageWriteStampTable.decWriteStamp(a20addr);
} else {
// access outside limits of physical memory, ignore
BX_DEBUG(("Write outside the limits of physical memory (0x" FMT_PHY_ADDRX ") (ignore)", a20addr));
}
}
void BX_MEMORY_STUB_C::readPhysicalPage(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data)
{
Bit8u *data_ptr;
bx_phy_address a20addr = A20ADDR(addr);
// Note: accesses should always be contained within a single page
if ((addr>>12) != ((addr+len-1)>>12)) {
BX_PANIC(("readPhysicalPage: cross page access at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len));
}
if (a20addr < BX_MEM_THIS len) {
if (len == 8) {
* (Bit64u*) data = ReadHostQWordFromLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 4) {
* (Bit32u*) data = ReadHostDWordFromLittleEndian((Bit32u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 2) {
* (Bit16u*) data = ReadHostWordFromLittleEndian((Bit16u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 1) {
* (Bit8u *) data = * (BX_MEM_THIS get_vector(a20addr));
return;
}
// len == other case can just fall thru to special cases handling
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
// addr *not* in range 000A0000 .. 000FFFFF
while(1) {
// Read in chunks of 8 bytes if we can
if ((len & 7) == 0) {
*((Bit64u*)data_ptr) = ReadHostQWordFromLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr));
len -= 8;
a20addr += 8;
#ifdef BX_LITTLE_ENDIAN
data_ptr += 8;
#else
data_ptr -= 8;
#endif
if (len == 0) return;
} else {
*data_ptr = *(BX_MEM_THIS get_vector(a20addr));
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
}
else // access outside limits of physical memory
{
// bogus memory
memset(data, 0xFF, len);
}
}
#if BX_SUPPORT_MONITOR_MWAIT
//
// MONITOR/MWAIT - x86arch way to optimize idle loops in CPU
//
bool BX_MEMORY_STUB_C::is_monitor(bx_phy_address begin_addr, unsigned len)
{
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
if (BX_CPU(i)->is_monitor(begin_addr, len))
return true;
}
return false; // this is NOT monitored page
}
void BX_MEMORY_STUB_C::check_monitor(bx_phy_address begin_addr, unsigned len)
{
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
BX_CPU(i)->check_monitor(begin_addr, len);
}
}
#endif

View File

@ -28,20 +28,8 @@
#include "iodev/iodev.h"
#define LOG_THIS BX_MEM(0)->
// block size must be power of two
BX_CPP_INLINE bool is_power_of_2(Bit64u x)
{
return (x & (x - 1)) == 0;
}
// alignment of memory vector, must be a power of 2
#define BX_MEM_VECTOR_ALIGN 4096
#define BX_MEM_HANDLERS ((BX_CONST64(1) << BX_PHY_ADDRESS_WIDTH) >> 20) /* one per megabyte */
#if BX_LARGE_RAMFILE
Bit8u* const BX_MEM_C::swapped_out = ((Bit8u*)NULL - sizeof(Bit8u));
#endif
#define FLASH_READ_ARRAY 0xff
#define FLASH_INT_ID 0x90
#define FLASH_READ_STATUS 0x70
@ -51,104 +39,25 @@ Bit8u* const BX_MEM_C::swapped_out = ((Bit8u*)NULL - sizeof(Bit8u));
#define FLASH_PROG_SETUP 0x40
#define FLASH_ERASE 0xd0
BX_MEM_C::BX_MEM_C()
BX_MEM_C::BX_MEM_C() : BX_MEMORY_STUB_C()
{
put("memory", "MEM0");
vector = NULL;
actual_vector = NULL;
blocks = NULL;
len = 0;
used_blocks = 0;
memory_handlers = NULL;
#if BX_LARGE_RAMFILE
next_swapout_idx = 0;
overflow_file = NULL;
#endif
}
Bit8u* BX_MEM_C::alloc_vector_aligned(Bit64u bytes, Bit64u alignment)
{
Bit64u test_mask = alignment - 1;
BX_MEM_THIS actual_vector = new Bit8u [(Bit32u)(bytes + test_mask)];
if (BX_MEM_THIS actual_vector == 0) {
BX_PANIC(("alloc_vector_aligned: unable to allocate host RAM !"));
return 0;
}
// round address forward to nearest multiple of alignment. Alignment
// MUST BE a power of two for this to work.
Bit64u masked = ((Bit64u)(BX_MEM_THIS actual_vector + test_mask)) & ~test_mask;
Bit8u *vector = (Bit8u *) masked;
// sanity check: no lost bits during pointer conversion
assert(sizeof(masked) >= sizeof(vector));
// sanity check: after realignment, everything fits in allocated space
assert(vector+bytes <= BX_MEM_THIS actual_vector+bytes+test_mask);
return vector;
}
BX_MEM_C::~BX_MEM_C()
{
#if BX_LARGE_RAMFILE
if (overflow_file)
fclose(BX_MEM_THIS overflow_file);
#endif
cleanup_memory();
}
void BX_MEM_C::init_memory(Bit64u guest, Bit64u host, Bit32u block_size)
{
unsigned i, idx;
unsigned idx, i;
// accept only memory size which is multiply of 1M
BX_ASSERT((host & 0xfffff) == 0);
BX_ASSERT((guest & 0xfffff) == 0);
BX_MEMORY_STUB_C::init_memory(guest, host, block_size);
if (! is_power_of_2(block_size)) {
BX_PANIC(("Block size %d is not power of two !", block_size));
}
if (BX_MEM_THIS actual_vector != NULL) {
BX_INFO(("freeing existing memory vector"));
delete [] BX_MEM_THIS actual_vector;
BX_MEM_THIS actual_vector = NULL;
BX_MEM_THIS vector = NULL;
BX_MEM_THIS blocks = NULL;
}
BX_MEM_THIS vector = alloc_vector_aligned(host + BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN);
BX_INFO(("allocated memory at %p. after alignment, vector=%p, block_size = %dK",
BX_MEM_THIS actual_vector, BX_MEM_THIS vector, block_size/1024));
BX_MEM_THIS len = guest;
BX_MEM_THIS allocated = host;
BX_MEM_THIS rom = &BX_MEM_THIS vector[host];
BX_MEM_THIS bogus = &BX_MEM_THIS vector[host + BIOSROMSZ + EXROMSIZE];
memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE + 4096);
BX_MEM_THIS block_size = block_size;
// block must be large enough to fit num_blocks in 32-bit
BX_ASSERT((BX_MEM_THIS len / BX_MEM_THIS block_size) <= 0xffffffff);
Bit32u num_blocks = (Bit32u)(BX_MEM_THIS len / BX_MEM_THIS block_size);
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS len / (1024.0*1024.0))));
BX_INFO(("mem block size = 0x%08x, blocks=%u", BX_MEM_THIS block_size, num_blocks));
BX_MEM_THIS blocks = new Bit8u* [num_blocks];
if (0) {
// all guest memory is allocated, just map it
for (idx = 0; idx < num_blocks; idx++) {
BX_MEM_THIS blocks[idx] = BX_MEM_THIS vector + (idx * BX_MEM_THIS block_size);
}
BX_MEM_THIS used_blocks = num_blocks;
}
else {
// host cannot allocate all requested guest memory
for (idx = 0; idx < num_blocks; idx++) {
BX_MEM_THIS blocks[idx] = NULL;
}
BX_MEM_THIS used_blocks = 0;
}
BX_MEM_THIS smram_available = false;
BX_MEM_THIS smram_enable = false;
BX_MEM_THIS smram_restricted = false;
BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[BX_MEM_HANDLERS];
for (idx = 0; idx < BX_MEM_HANDLERS; idx++)
@ -161,10 +70,6 @@ void BX_MEM_C::init_memory(Bit64u guest, Bit64u host, Bit32u block_size)
BX_MEM_THIS flash_status = 0x80;
BX_MEM_THIS flash_wsm_state = FLASH_READ_ARRAY;
BX_MEM_THIS smram_available = false;
BX_MEM_THIS smram_enable = false;
BX_MEM_THIS smram_restricted = false;
for (i = 0; i < 65; i++)
BX_MEM_THIS rom_present[i] = false;
for (i = 0; i <= BX_MEM_AREA_F0000; i++) {
@ -175,102 +80,6 @@ void BX_MEM_C::init_memory(Bit64u guest, Bit64u host, Bit32u block_size)
BX_MEM_THIS register_state();
}
Bit8u* BX_MEM_C::get_vector(bx_phy_address addr)
{
Bit32u block = (Bit32u)(addr / BX_MEM_THIS block_size);
#if (BX_LARGE_RAMFILE)
if (!BX_MEM_THIS blocks[block] || (BX_MEM_THIS blocks[block] == BX_MEM_THIS swapped_out))
#else
if (!BX_MEM_THIS blocks[block])
#endif
allocate_block(block);
return BX_MEM_THIS blocks[block] + (Bit32u)(addr & (BX_MEM_THIS block_size-1));
}
#if BX_LARGE_RAMFILE
void BX_MEM_C::read_block(Bit32u block)
{
const Bit64u block_address = Bit64u(block) * BX_MEM_THIS block_size;
if (fseeko64(BX_MEM_THIS overflow_file, block_address, SEEK_SET))
BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_LL "x in memory overflow file!", block_address));
// We could legitimately get an EOF condition if we are reading the last bit of memory.ram
if ((fread(BX_MEM_THIS blocks[block], BX_MEM_THIS block_size, 1, BX_MEM_THIS overflow_file) != 1) &&
(!feof(BX_MEM_THIS overflow_file)))
BX_PANIC(("FATAL ERROR: Could not read from 0x" FMT_LL "x in memory overflow file!", block_address));
}
#endif
void BX_MEM_C::allocate_block(Bit32u block)
{
const Bit32u max_blocks = (Bit32u)(BX_MEM_THIS allocated / BX_MEM_THIS block_size);
#if BX_LARGE_RAMFILE
/*
* Match block to vector address
* First, see if there is any spare host memory blocks we can still freely allocate
*/
if (BX_MEM_THIS used_blocks >= max_blocks) {
Bit32u original_replacement_block = BX_MEM_THIS next_swapout_idx;
// Find a block to replace
bool used_for_tlb;
Bit8u *buffer;
do {
do {
// Wrap if necessary
if (++(BX_MEM_THIS next_swapout_idx)==((BX_MEM_THIS len)/BX_MEM_THIS block_size))
BX_MEM_THIS next_swapout_idx = 0;
if (BX_MEM_THIS next_swapout_idx == original_replacement_block)
BX_PANIC(("FATAL ERROR: Insufficient working RAM, all blocks are currently used for TLB entries!"));
buffer = BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx];
} while ((!buffer) || (buffer == BX_MEM_C::swapped_out));
used_for_tlb = false;
// tlb buffer check loop
const Bit8u* buffer_end = buffer+BX_MEM_THIS block_size;
// Don't replace it if any CPU is using it as a TLB entry
for (int i=0; i<BX_SMP_PROCESSORS && !used_for_tlb;i++)
used_for_tlb = BX_CPU(i)->check_addr_in_tlb_buffers(buffer, buffer_end);
} while (used_for_tlb);
// Flush the block to be replaced
bx_phy_address address = bx_phy_address(BX_MEM_THIS next_swapout_idx) * BX_MEM_THIS block_size;
// Create overflow file if it does not currently exist.
if (!BX_MEM_THIS overflow_file) {
BX_MEM_THIS overflow_file = tmpfile64();
if (!BX_MEM_THIS overflow_file)
BX_PANIC(("Unable to allocate memory overflow file"));
}
// Write swapped out block
if (fseeko64(BX_MEM_THIS overflow_file, address, SEEK_SET))
BX_PANIC(("FATAL ERROR: Could not seek to 0x" FMT_PHY_ADDRX " in overflow file!", address));
if (1 != fwrite (BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx], BX_MEM_THIS block_size, 1, BX_MEM_THIS overflow_file))
BX_PANIC(("FATAL ERROR: Could not write at 0x" FMT_PHY_ADDRX " in overflow file!", address));
// Mark swapped out block
BX_MEM_THIS blocks[BX_MEM_THIS next_swapout_idx] = BX_MEM_C::swapped_out;
BX_MEM_THIS blocks[block] = buffer;
read_block(block);
BX_DEBUG(("allocate_block: block=0x%x, replaced 0x%x", block, BX_MEM_THIS next_swapout_idx));
}
else {
BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks++ * BX_MEM_THIS block_size);
BX_DEBUG(("allocate_block: block=0x%x used 0x%x of 0x%x",
block, BX_MEM_THIS used_blocks, max_blocks));
}
#else
// Legacy default allocator
if (BX_MEM_THIS used_blocks >= max_blocks) {
BX_PANIC(("FATAL ERROR: all available memory is already allocated !"));
}
else {
BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks * BX_MEM_THIS block_size);
BX_MEM_THIS used_blocks++;
}
BX_DEBUG(("allocate_block: used_blocks=0x%x of 0x%x", BX_MEM_THIS used_blocks, max_blocks));
#endif
}
#if BX_LARGE_RAMFILE
// The blocks in RAM must also be flushed to the save file.
void ramfile_save_handler(void *devptr, FILE *fp)
@ -366,30 +175,20 @@ void BX_MEM_C::register_state()
void BX_MEM_C::cleanup_memory()
{
unsigned idx;
BX_MEMORY_STUB_C::cleanup_memory();
if (BX_MEM_THIS vector != NULL) {
delete [] BX_MEM_THIS actual_vector;
BX_MEM_THIS actual_vector = NULL;
BX_MEM_THIS vector = NULL;
BX_MEM_THIS rom = NULL;
BX_MEM_THIS bogus = NULL;
delete [] BX_MEM_THIS blocks;
BX_MEM_THIS blocks = 0;
BX_MEM_THIS used_blocks = 0;
if (BX_MEM_THIS memory_handlers != NULL) {
for (idx = 0; idx < BX_MEM_HANDLERS; idx++) {
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[idx];
struct memory_handler_struct *prev = NULL;
while (memory_handler) {
prev = memory_handler;
memory_handler = memory_handler->next;
delete prev;
}
if (BX_MEM_THIS memory_handlers != NULL) {
for (unsigned idx = 0; idx < BX_MEM_HANDLERS; idx++) {
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[idx];
struct memory_handler_struct *prev = NULL;
while (memory_handler) {
prev = memory_handler;
memory_handler = memory_handler->next;
delete prev;
}
delete [] BX_MEM_THIS memory_handlers;
BX_MEM_THIS memory_handlers = NULL;
}
delete [] BX_MEM_THIS memory_handlers;
BX_MEM_THIS memory_handlers = NULL;
}
}
@ -698,7 +497,7 @@ bool BX_MEM_C::dbg_set_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit
bool use_memory_handler = false, use_smram = false;
if ((a20addr + len - 1) > BX_MEM_THIS len) {
return(0); // error, beyond limits of memory
return false; // error, beyond limits of memory
}
bool is_bios = (a20addr >= (bx_phy_address)BX_MEM_THIS bios_rom_addr);
@ -748,55 +547,10 @@ bool BX_MEM_C::dbg_set_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit
buf++;
a20addr++;
}
return(1);
}
bool BX_MEM_C::dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc)
{
*crc = 0;
if (addr1 > addr2)
return(0);
if (addr2 >= BX_MEM_THIS len)
return(0); // error, specified address past last phy mem addr
unsigned len = 1 + addr2 - addr1;
// do not cross 4K boundary
while(1) {
unsigned remainsInPage = 0x1000 - (addr1 & 0xfff);
unsigned access_length = (len < remainsInPage) ? len : remainsInPage;
*crc = crc32(BX_MEM_THIS get_vector(addr1), access_length);
addr1 += access_length;
len -= access_length;
}
return(1);
return true;
}
#endif
//
// Return a host address corresponding to the guest physical memory
// address (with A20 already applied), given that the calling
// code will perform an 'op' operation. This address will be
// used for direct access to guest memory.
// Values of 'op' are { BX_READ, BX_WRITE, BX_EXECUTE, BX_RW }.
//
// The other assumption is that the calling code _only_ accesses memory
// directly within the page that encompasses the address requested.
//
//
// Memory map inside the 1st megabyte:
//
// 0x00000 - 0x7ffff DOS area (512K)
// 0x80000 - 0x9ffff Optional fixed memory hole (128K)
// 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K)
// 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K)
// 0xe0000 - 0xeffff Lower BIOS Area (64K)
// 0xf0000 - 0xfffff Upper BIOS Area (64K)
//
Bit8u *BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, bx_phy_address addr, unsigned rw)
{
bx_phy_address a20addr = A20ADDR(addr);
@ -924,9 +678,9 @@ BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler,
bx_phy_address begin_addr, bx_phy_address end_addr)
{
if (end_addr < begin_addr)
return 0;
return false;
if (!read_handler) // allow NULL write and fetch handler
return 0;
return false;
BX_INFO(("Register memory access handlers: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
for (Bit32u page_idx = (Bit32u)(begin_addr >> 20); page_idx <= (Bit32u)(end_addr >> 20); page_idx++) {
Bit16u bitmap = 0xffff;
@ -939,7 +693,7 @@ BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler,
if (BX_MEM_THIS memory_handlers[page_idx] != NULL) {
if ((bitmap & BX_MEM_THIS memory_handlers[page_idx]->bitmap) != 0) {
BX_ERROR(("Register failed: overlapping memory handlers!"));
return 0;
return false;
} else {
bitmap |= BX_MEM_THIS memory_handlers[page_idx]->bitmap;
}
@ -955,7 +709,7 @@ BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler,
memory_handler->end = end_addr;
memory_handler->bitmap = bitmap;
}
return 1;
return true;
}
bool BX_MEM_C::unregisterMemoryHandlers(void *param, bx_phy_address begin_addr, bx_phy_address end_addr)
@ -1123,28 +877,3 @@ void BX_MEM_C::flash_write(Bit32u addr, Bit8u data)
}
}
}
#if BX_SUPPORT_MONITOR_MWAIT
//
// MONITOR/MWAIT - x86arch way to optimize idle loops in CPU
//
bool BX_MEM_C::is_monitor(bx_phy_address begin_addr, unsigned len)
{
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
if (BX_CPU(i)->is_monitor(begin_addr, len))
return 1;
}
return 0; // // this is NOT monitored page
}
void BX_MEM_C::check_monitor(bx_phy_address begin_addr, unsigned len)
{
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
BX_CPU(i)->check_monitor(begin_addr, len);
}
}
#endif