paging anti-code-duplication, phase1

This commit is contained in:
Stanislav Shwartsman 2010-04-01 05:26:20 +00:00
parent 24bd0399d2
commit 1b24ebe9bb

View File

@ -1,5 +1,5 @@
/////////////////////////////////////////////////////////////////////////
// $Id: paging.cc,v 1.199 2010-03-31 14:17:51 sshwarts Exp $
// $Id: paging.cc,v 1.200 2010-04-01 05:26:20 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2010 The Bochs Project
@ -779,157 +779,117 @@ int BX_CPU_C::check_entry_PAE(const char *s, Bit64u entry, Bit64u reserved, unsi
return -1;
}
#define BX_LEVEL_PML4 3
#define BX_LEVEL_PDPE 2
#define BX_LEVEL_PDE 1
#define BX_LEVEL_PTE 0
static const char *bx_paging_level[4] = { "PTE", "PDE", "PDPE", "PML4" };
#if BX_SUPPORT_X86_64
// Translate a linear address to a physical address in long mode
bx_phy_address BX_CPU_C::translate_linear_long_mode(bx_address laddr, bx_address &lpf_mask, Bit32u &combined_access, unsigned curr_pl, unsigned rw)
{
bx_phy_address pdpe_addr, pml4_addr, pde_addr, pte_addr, ppf;
Bit64u pdpe, pde, pte, pml4;
bx_phy_address entry_addr[4], ppf;
Bit64u entry[4];
unsigned priv_index;
bx_bool nx_fault = 0, isWrite = (rw & 1); // write or r-m-w
unsigned pl = (curr_pl == 3);
int fault;
int fault, level, leaf = BX_LEVEL_PTE;
combined_access = 0x06;
// Get PML4 entry
pml4_addr = (bx_phy_address)(BX_CPU_THIS_PTR cr3_masked |
entry_addr[BX_LEVEL_PML4] = (bx_phy_address)(BX_CPU_THIS_PTR cr3_masked |
((laddr & BX_CONST64(0x0000ff8000000000)) >> 36));
access_read_physical(pml4_addr, 8, &pml4);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_READ, (Bit8u*)(&pml4));
access_read_physical(entry_addr[BX_LEVEL_PML4], 8, &entry[BX_LEVEL_PML4]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PML4], 8, BX_READ, (Bit8u*)(&entry[BX_LEVEL_PML4]));
fault = check_entry_PAE("PML4", pml4, PAGING_PAE_PML4_RESERVED_BITS, rw, &nx_fault);
fault = check_entry_PAE("PML4", entry[BX_LEVEL_PML4], PAGING_PAE_PML4_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
pdpe_addr = (bx_phy_address)((pml4 & BX_CONST64(0x000ffffffffff000)) |
combined_access &= entry[BX_LEVEL_PML4] & 0x06; // U/S and R/W
entry_addr[BX_LEVEL_PDPE] = (bx_phy_address)((entry[BX_LEVEL_PML4] & BX_CONST64(0x000ffffffffff000)) |
((laddr & BX_CONST64(0x0000007fc0000000)) >> 27));
access_read_physical(pdpe_addr, 8, &pdpe);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_READ, (Bit8u*)(&pdpe));
access_read_physical(entry_addr[BX_LEVEL_PDPE], 8, &entry[BX_LEVEL_PDPE]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PDPE], 8, BX_READ, (Bit8u*)(&entry[BX_LEVEL_PDPE]));
fault = check_entry_PAE("PDPE", pdpe, BX_PAGING_PHY_ADDRESS_RESERVED_BITS, rw, &nx_fault);
fault = check_entry_PAE("PDPE", entry[BX_LEVEL_PDPE], BX_PAGING_PHY_ADDRESS_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
combined_access &= entry[BX_LEVEL_PDPE] & 0x06; // U/S and R/W
#if BX_SUPPORT_1G_PAGES
if (pdpe & 0x80) {
if (pdpe & PAGING_PAE_PDPTE1G_RESERVED_BITS) {
BX_DEBUG(("PAE 1G PDPE: reserved bit is set: PDPE=%08x:%08x", GET32H(pdpe), GET32L(pdpe)));
if (entry[BX_LEVEL_PDPE] & 0x80) {
if (entry[BX_LEVEL_PDPE] & PAGING_PAE_PDPTE1G_RESERVED_BITS) {
BX_DEBUG(("PAE 1G PDPE: reserved bit is set: PDPE=%08x:%08x", GET32H(entry[BX_LEVEL_PDPE]), GET32L(entry[BX_LEVEL_PDPE])));
page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, rw);
}
// Combined access is just access from the pde (no pte involved).
combined_access = (pml4 & pdpe) & 0x06; // U/S and R/W
priv_index =
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
(pl<<3) | // bit 3
(combined_access | isWrite); // bit 2,1,0
if (!priv_check[priv_index] || nx_fault)
page_fault(ERROR_PROTECTION, laddr, pl, rw);
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pdpe & 0x100); // G
// Update PML4 A bit if needed.
if (!(pml4 & 0x20)) {
pml4 |= 0x20;
access_write_physical(pml4_addr, 8, &pml4);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_WRITE, (Bit8u*)(&pml4));
}
// Update PDPE A/D bits if needed.
if (((pdpe & 0x20)==0) || (isWrite && ((pdpe & 0x40)==0))) {
pdpe |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pdpe_addr, 8, &pdpe);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_WRITE, (Bit8u*)(&pdpe));
}
// Make up the physical page frame address.
ppf = (bx_phy_address)((pdpe & BX_CONST64(0x000fffffc0000000)) | (laddr & 0x3ffff000));
ppf = (bx_phy_address)((entry[BX_LEVEL_PDPE] & BX_CONST64(0x000fffffc0000000)) | (laddr & 0x3ffff000));
lpf_mask = 0x3fffffff;
return ppf;
leaf = BX_LEVEL_PDPE;
goto paging_long_mode_leaf_entry;
}
#else
if (pdpe & 0x80) {
if (entry[BX_LEVEL_PDPE] & 0x80) {
BX_DEBUG(("PAE PDPE: page size bit set when reserved"));
page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, rw);
}
#endif
pde_addr = (bx_phy_address)((pdpe & BX_CONST64(0x000ffffffffff000))
entry_addr[BX_LEVEL_PDE] = (bx_phy_address)((entry[BX_LEVEL_PDPE] & BX_CONST64(0x000ffffffffff000))
| ((laddr & 0x3fe00000) >> 18));
access_read_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_READ, (Bit8u*)(&pde));
access_read_physical(entry_addr[BX_LEVEL_PDE], 8, &entry[BX_LEVEL_PDE]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PDE], 8, BX_READ, (Bit8u*)(&entry[BX_LEVEL_PDE]));
fault = check_entry_PAE("PDE", pde, PAGING_PAE_PDE_RESERVED_BITS, rw, &nx_fault);
fault = check_entry_PAE("PDE", entry[BX_LEVEL_PDE], PAGING_PAE_PDE_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
combined_access &= entry[BX_LEVEL_PDE] & 0x06; // U/S and R/W
// Ignore CR4.PSE in PAE mode
if (pde & 0x80) {
if (pde & PAGING_PAE_PDE2M_RESERVED_BITS) {
BX_DEBUG(("PAE PDE2M: reserved bit is set PDE=%08x:%08x", GET32H(pde), GET32L(pde)));
if (entry[BX_LEVEL_PDE] & 0x80) {
if (entry[BX_LEVEL_PDE] & PAGING_PAE_PDE2M_RESERVED_BITS) {
BX_DEBUG(("PAE PDE2M: reserved bit is set PDE=%08x:%08x", GET32H(entry[BX_LEVEL_PDE]), GET32L(entry[BX_LEVEL_PDE])));
page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, rw);
}
// Combined access is just access from the pde (no pte involved).
combined_access = (pml4 & pdpe & pde) & 0x06; // U/S and R/W
priv_index =
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
(pl<<3) | // bit 3
(combined_access | isWrite); // bit 2,1,0
if (!priv_check[priv_index] || nx_fault)
page_fault(ERROR_PROTECTION, laddr, pl, rw);
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pde & 0x100); // G
// Update PML4 A bit if needed.
if (!(pml4 & 0x20)) {
pml4 |= 0x20;
access_write_physical(pml4_addr, 8, &pml4);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_WRITE, (Bit8u*)(&pml4));
}
// Update PDPE A bit if needed.
if (!(pdpe & 0x20)) {
pdpe |= 0x20;
access_write_physical(pdpe_addr, 8, &pdpe);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_WRITE, (Bit8u*)(&pdpe));
}
// Update PDE A/D bits if needed.
if (((pde & 0x20)==0) || (isWrite && ((pde & 0x40)==0))) {
pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_WRITE, (Bit8u*)(&pde));
}
// Make up the physical page frame address.
ppf = (bx_phy_address)((pde & BX_CONST64(0x000fffffffe00000)) | (laddr & 0x001ff000));
ppf = (bx_phy_address)((entry[BX_LEVEL_PDE] & BX_CONST64(0x000fffffffe00000)) | (laddr & 0x001ff000));
lpf_mask = 0x1fffff;
return ppf;
leaf = BX_LEVEL_PDE;
goto paging_long_mode_leaf_entry;
}
// 4k pages, Get page table entry
pte_addr = (bx_phy_address)((pde & BX_CONST64(0x000ffffffffff000)) |
entry_addr[BX_LEVEL_PTE] = (bx_phy_address)((entry[BX_LEVEL_PDE] & BX_CONST64(0x000ffffffffff000)) |
((laddr & 0x001ff000) >> 9));
access_read_physical(pte_addr, 8, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 8, BX_READ, (Bit8u*)(&pte));
access_read_physical(entry_addr[BX_LEVEL_PTE], 8, &entry[BX_LEVEL_PTE]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PTE], 8, BX_READ, (Bit8u*)(&entry[BX_LEVEL_PTE]));
fault = check_entry_PAE("PTE", pte, PAGING_PAE_PTE_RESERVED_BITS, rw, &nx_fault);
fault = check_entry_PAE("PTE", entry[BX_LEVEL_PTE], PAGING_PAE_PTE_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
combined_access = (pml4 & pdpe & pde & pte) & 0x06; // U/S and R/W
combined_access &= entry[BX_LEVEL_PTE] & 0x06; // U/S and R/W
// Make up the physical page frame address.
ppf = (bx_phy_address)(entry[BX_LEVEL_PTE] & BX_CONST64(0x000ffffffffff000));
paging_long_mode_leaf_entry:
priv_index =
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
@ -940,39 +900,24 @@ bx_phy_address BX_CPU_C::translate_linear_long_mode(bx_address laddr, bx_address
page_fault(ERROR_PROTECTION, laddr, pl, rw);
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pte & 0x100); // G
combined_access |= (entry[leaf] & 0x100); // G
// Update PML4 A bit if needed.
if (!(pml4 & 0x20)) {
pml4 |= 0x20;
access_write_physical(pml4_addr, 8, &pml4);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_WRITE, (Bit8u*)(&pml4));
}
// Update PDPE A bit if needed.
if (!(pdpe & 0x20)) {
pdpe |= 0x20;
access_write_physical(pdpe_addr, 8, &pdpe);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_WRITE, (Bit8u*)(&pdpe));
}
// Update PDE A bit if needed.
if (!(pde & 0x20)) {
pde |= 0x20;
access_write_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_WRITE, (Bit8u*)(&pde));
// Update A bit if needed.
for (level=BX_LEVEL_PML4; level > leaf; level--) {
if (!(entry[level] & 0x20)) {
entry[level] |= 0x20;
access_write_physical(entry_addr[level], 8, &entry[level]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[level], 8, BX_WRITE, (Bit8u*)(&entry[level]));
}
}
// Update PTE A/D bits if needed.
if (((pte & 0x20)==0) || (isWrite && ((pte & 0x40)==0))) {
pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pte_addr, 8, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 8, BX_WRITE, (Bit8u*)(&pte));
if (!(entry[leaf] & 0x20) || (isWrite && !(entry[leaf] & 0x40))) {
entry[leaf] |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(entry_addr[leaf], 8, &entry[leaf]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[leaf], 8, BX_WRITE, (Bit8u*)(&entry[leaf]));
}
// Make up the physical page frame address.
ppf = (bx_phy_address)(pte & BX_CONST64(0x000ffffffffff000));
return ppf;
}
@ -981,12 +926,13 @@ bx_phy_address BX_CPU_C::translate_linear_long_mode(bx_address laddr, bx_address
// Translate a linear address to a physical address in PAE paging mode
bx_phy_address BX_CPU_C::translate_linear_PAE(bx_address laddr, bx_address &lpf_mask, Bit32u &combined_access, unsigned curr_pl, unsigned rw)
{
bx_phy_address pdpe_addr, ppf;
Bit64u pdpe, pde, pte;
bx_phy_address entry_addr[3], ppf;
Bit64u entry[3];
unsigned priv_index;
bx_bool nx_fault = 0, isWrite = (rw & 1); // write or r-m-w
unsigned pl = (curr_pl == 3);
int fault;
combined_access = 0x06;
#if BX_SUPPORT_X86_64
if (long_mode()) {
@ -994,7 +940,7 @@ bx_phy_address BX_CPU_C::translate_linear_PAE(bx_address laddr, bx_address &lpf_
}
#endif
pdpe_addr = (bx_phy_address) (BX_CPU_THIS_PTR cr3_masked | ((laddr & 0xc0000000) >> 27));
entry_addr[BX_LEVEL_PDPE] = (bx_phy_address) (BX_CPU_THIS_PTR cr3_masked | ((laddr & 0xc0000000) >> 27));
if (! BX_CPU_THIS_PTR PDPTR_CACHE.valid) {
if (! CheckPDPTR(BX_CPU_THIS_PTR cr3_masked)) {
@ -1003,32 +949,31 @@ bx_phy_address BX_CPU_C::translate_linear_PAE(bx_address laddr, bx_address &lpf_
}
}
pdpe = BX_CPU_THIS_PTR PDPTR_CACHE.entry[(laddr >> 30) & 3];
entry[BX_LEVEL_PDPE] = BX_CPU_THIS_PTR PDPTR_CACHE.entry[(laddr >> 30) & 3];
fault = check_entry_PAE("PDPE", pdpe, PAGING_PAE_PDPTE_RESERVED_BITS, rw, &nx_fault);
fault = check_entry_PAE("PDPE", entry[BX_LEVEL_PDPE], PAGING_PAE_PDPTE_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
bx_phy_address pde_addr = (bx_phy_address)((pdpe & BX_CONST64(0x000ffffffffff000))
entry_addr[BX_LEVEL_PDE] = (bx_phy_address)((entry[BX_LEVEL_PDPE] & BX_CONST64(0x000ffffffffff000))
| ((laddr & 0x3fe00000) >> 18));
access_read_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_READ, (Bit8u*)(&pde));
access_read_physical(entry_addr[BX_LEVEL_PDE], 8, &entry[BX_LEVEL_PDE]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PDE], 8, BX_READ, (Bit8u*)(&entry[BX_LEVEL_PDE]));
fault = check_entry_PAE("PDE", pde, PAGING_PAE_PDE_RESERVED_BITS, rw, &nx_fault);
fault = check_entry_PAE("PDE", entry[BX_LEVEL_PDE], PAGING_PAE_PDE_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
combined_access &= entry[BX_LEVEL_PDE] & 0x06; // U/S and R/W
// Ignore CR4.PSE in PAE mode
if (pde & 0x80) {
if (pde & PAGING_PAE_PDE2M_RESERVED_BITS) {
BX_DEBUG(("PAE PDE2M: reserved bit is set PDE=%08x:%08x", GET32H(pde), GET32L(pde)));
if (entry[BX_LEVEL_PDE] & 0x80) {
if (entry[BX_LEVEL_PDE] & PAGING_PAE_PDE2M_RESERVED_BITS) {
BX_DEBUG(("PAE PDE2M: reserved bit is set PDE=%08x:%08x", GET32H(entry[BX_LEVEL_PDE]), GET32L(entry[BX_LEVEL_PDE])));
page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, rw);
}
// Combined access is just access from the pde (no pte involved).
combined_access = (pde) & 0x06; // U/S and R/W
priv_index =
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
(pl<<3) | // bit 3
@ -1038,34 +983,34 @@ bx_phy_address BX_CPU_C::translate_linear_PAE(bx_address laddr, bx_address &lpf_
page_fault(ERROR_PROTECTION, laddr, pl, rw);
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pde & 0x100); // G
combined_access |= (entry[BX_LEVEL_PDE] & 0x100); // G
// Update PDE A/D bits if needed.
if (((pde & 0x20)==0) || (isWrite && ((pde & 0x40)==0))) {
pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_WRITE, (Bit8u*)(&pde));
if (!(entry[BX_LEVEL_PDE] & 0x20) || (isWrite && !(entry[BX_LEVEL_PDE] & 0x40))) {
entry[BX_LEVEL_PDE] |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(entry_addr[BX_LEVEL_PDE], 8, &entry[BX_LEVEL_PDE]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PDE], 8, BX_WRITE, (Bit8u*)(&entry[BX_LEVEL_PDE]));
}
// Make up the physical page frame address.
ppf = (bx_phy_address)((pde & BX_CONST64(0x000fffffffe00000)) | (laddr & 0x001ff000));
ppf = (bx_phy_address)((entry[BX_LEVEL_PDE] & BX_CONST64(0x000fffffffe00000)) | (laddr & 0x001ff000));
lpf_mask = 0x1fffff;
return ppf;
}
// 4k pages, Get page table entry
bx_phy_address pte_addr = (bx_phy_address)((pde & BX_CONST64(0x000ffffffffff000)) |
entry_addr[BX_LEVEL_PTE] = (bx_phy_address)((entry[BX_LEVEL_PDE] & BX_CONST64(0x000ffffffffff000)) |
((laddr & 0x001ff000) >> 9));
access_read_physical(pte_addr, 8, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 8, BX_READ, (Bit8u*)(&pte));
access_read_physical(entry_addr[BX_LEVEL_PTE], 8, &entry[BX_LEVEL_PTE]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PTE], 8, BX_READ, (Bit8u*)(&entry[BX_LEVEL_PTE]));
fault = check_entry_PAE("PTE", pte, PAGING_PAE_PTE_RESERVED_BITS, rw, &nx_fault);
fault = check_entry_PAE("PTE", entry[BX_LEVEL_PTE], PAGING_PAE_PTE_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
combined_access = (pde & pte) & 0x06; // U/S and R/W
combined_access &= entry[BX_LEVEL_PTE] & 0x06; // U/S and R/W
priv_index =
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
@ -1076,24 +1021,24 @@ bx_phy_address BX_CPU_C::translate_linear_PAE(bx_address laddr, bx_address &lpf_
page_fault(ERROR_PROTECTION, laddr, pl, rw);
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pte & 0x100); // G
combined_access |= (entry[BX_LEVEL_PTE] & 0x100); // G
// Update PDE A bit if needed.
if (!(pde & 0x20)) {
pde |= 0x20;
access_write_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_WRITE, (Bit8u*)(&pde));
if (!(entry[BX_LEVEL_PDE] & 0x20)) {
entry[BX_LEVEL_PDE] |= 0x20;
access_write_physical(entry_addr[BX_LEVEL_PDE], 8, &entry[BX_LEVEL_PDE]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PDE], 8, BX_WRITE, (Bit8u*)(&entry[BX_LEVEL_PDE]));
}
// Update PTE A/D bits if needed.
if (((pte & 0x20)==0) || (isWrite && ((pte & 0x40)==0))) {
pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pte_addr, 8, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 8, BX_WRITE, (Bit8u*)(&pte));
if (!(entry[BX_LEVEL_PTE] & 0x20) || (isWrite && !(entry[BX_LEVEL_PTE] & 0x40))) {
entry[BX_LEVEL_PTE] |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(entry_addr[BX_LEVEL_PTE], 8, &entry[BX_LEVEL_PTE]);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_addr[BX_LEVEL_PTE], 8, BX_WRITE, (Bit8u*)(&entry[BX_LEVEL_PTE]));
}
// Make up the physical page frame address.
ppf = (bx_phy_address)(pte & BX_CONST64(0x000ffffffffff000));
ppf = (bx_phy_address)(entry[BX_LEVEL_PTE] & BX_CONST64(0x000ffffffffff000));
return ppf;
}
@ -1188,7 +1133,7 @@ bx_phy_address BX_CPU_C::translate_linear(bx_address laddr, unsigned curr_pl, un
#endif
// Update PDE A/D bits if needed.
if (((pde & 0x20)==0) || (isWrite && ((pde & 0x40)==0))) {
if (!(pde & 0x20) || (isWrite && !(pde & 0x40))) {
pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pde_addr, 4, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 4, BX_WRITE, (Bit8u*)(&pde));
@ -1247,7 +1192,7 @@ bx_phy_address BX_CPU_C::translate_linear(bx_address laddr, unsigned curr_pl, un
}
// Update PTE A/D bits if needed.
if (((pte & 0x20)==0) || (isWrite && ((pte & 0x40)==0))) {
if (!(pte & 0x20) || (isWrite && !(pte & 0x40))) {
pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pte_addr, 4, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 4, BX_WRITE, (Bit8u*)(&pte));