Bochs/bochs/iodev/pit_wrap.cc

487 lines
14 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
2002-02-09 01:27:51 +03:00
// $Id: pit_wrap.cc,v 1.17 2002-02-08 22:27:51 yakovlev Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#if BX_USE_NEW_PIT
#include "pit_wrap.h"
#define LOG_THIS bx_pit.
bx_pit_c bx_pit;
#if BX_USE_PIT_SMF
#define this (&bx_pit)
#endif
#ifdef OUT
# undef OUT
#endif
2002-02-09 01:27:51 +03:00
#define DEBUG_REALTIME_WITH_PRINTF 0
2002-02-08 05:57:27 +03:00
#define TIME_DIVIDER (1)
#define TIME_MULTIPLIER (1)
#define TIME_HEADSTART (1)
//USEC_ALPHA is multiplier for the past.
//USEC_ALPHA_B is 1-USEC_ALPHA, or multiplier for the present.
2002-02-09 01:27:51 +03:00
#define USEC_ALPHA ((double)(.8))
#define USEC_ALPHA_B ((double)(((double)1)-USEC_ALPHA))
2002-02-08 08:18:14 +03:00
#define MIN_MULT (0.9)
#define MIN_MULT_FLOOR (0.75)
#define MAX_MULT (1.25)
#define MAX_MULT_CEILING (1.5)
//How many timer ticks per usecond.
//1.193181MHz Clock
//1193/1000 Ticks Per usecond.
#define TICKS_PER_SECOND (1193181)
#define USEC_PER_SECOND (1000000)
#define TIME_MULT 1.193
#if BX_USE_REALTIME_PIT
# define TICKS_TO_USEC(a) ( ((a)*BX_PIT_THIS s.usec_per_second)/BX_PIT_THIS s.ticks_per_second )
# define USEC_TO_TICKS(a) ( ((a)*BX_PIT_THIS s.ticks_per_second)/BX_PIT_THIS s.usec_per_second )
#else
# define TICKS_TO_USEC(a) ( ((a)*USEC_PER_SECOND)/TICKS_PER_SECOND )
# define USEC_TO_TICKS(a) ( ((a)*TICKS_PER_SECOND)/USEC_PER_SECOND )
#endif
#define MAX(a,b) ( ((a)>(b))?(a):(b) )
bx_pit_c::bx_pit_c( void )
{
2001-06-27 23:16:01 +04:00
put("PIT");
settype(PITLOG);
s.speaker_data_on=0;
/* 8254 PIT (Programmable Interval Timer) */
BX_PIT_THIS s.timer_handle[1] = BX_NULL_TIMER_HANDLE;
BX_PIT_THIS s.timer_handle[2] = BX_NULL_TIMER_HANDLE;
BX_PIT_THIS s.timer_handle[0] = BX_NULL_TIMER_HANDLE;
}
bx_pit_c::~bx_pit_c( void )
{
}
int
bx_pit_c::init( bx_devices_c *d )
{
BX_PIT_THIS devices = d;
BX_PIT_THIS devices->register_irq(0, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0040, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0041, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0042, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0043, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0061, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0040, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0041, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0042, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0043, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0061, "8254 PIT");
BX_DEBUG(("pit: starting init"));
BX_PIT_THIS s.speaker_data_on = 0;
BX_PIT_THIS s.refresh_clock_div2 = 0;
BX_PIT_THIS s.timer.init();
BX_PIT_THIS s.timer_handle[0] = bx_pc_system.register_timer(this, timer_handler, (unsigned) 100 , 1, 1);
BX_DEBUG(("pit: RESETting timer."));
bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0],
MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
BX_PIT_THIS s.last_usec=bx_pc_system.time_usec();
BX_PIT_THIS s.total_ticks=0;
#if BX_USE_REALTIME_PIT
BX_PIT_THIS s.usec_per_second=USEC_PER_SECOND;
BX_PIT_THIS s.ticks_per_second=TICKS_PER_SECOND;
BX_PIT_THIS s.total_sec=0;
BX_PIT_THIS s.last_time=(time(NULL)*TIME_MULTIPLIER/TIME_DIVIDER)+TIME_HEADSTART;
#else
BX_PIT_THIS s.total_usec=0;
#endif
BX_DEBUG(("pit: finished init"));
BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%d",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
return(1);
}
void
bx_pit_c::timer_handler(void *this_ptr) {
bx_pit_c * class_ptr = (bx_pit_c *) this_ptr;
class_ptr->handle_timer();
}
void
bx_pit_c::handle_timer() {
Bit64u time_passed = bx_pc_system.time_usec()-BX_PIT_THIS s.last_usec;
Bit32u time_passed32 = time_passed;
BX_DEBUG(("pit: entering timer handler"));
if(time_passed32) {
periodic(time_passed32);
}
BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed;
if(time_passed ||
(BX_PIT_THIS s.last_next_event_time
!= BX_PIT_THIS s.timer.get_next_event_time())
) {
BX_DEBUG(("pit: RESETting timer."));
bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0],
MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
}
BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u
bx_pit_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_PIT_SMF
bx_pit_c *class_ptr = (bx_pit_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
Bit32u
bx_pit_c::read( Bit32u address, unsigned int io_len )
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PIT_SMF
BX_DEBUG(("pit: entering read handler"));
handle_timer();
if (io_len > 1)
BX_PANIC(("pit: io read from port %04x, len=%u", (unsigned) address,
(unsigned) io_len));
if (bx_dbg.pit)
BX_INFO(("pit: io read from port %04x", (unsigned) address));
switch (address) {
case 0x40: /* timer 0 - system ticks */
return(BX_PIT_THIS s.timer.read(0));
break;
case 0x41: /* timer 1 read */
return(BX_PIT_THIS s.timer.read(1));
break;
case 0x42: /* timer 2 read */
return(BX_PIT_THIS s.timer.read(2));
break;
case 0x43: /* timer 1 read */
return(BX_PIT_THIS s.timer.read(3));
break;
case 0x61:
/* AT, port 61h */
BX_PIT_THIS s.refresh_clock_div2 = !BX_PIT_THIS s.refresh_clock_div2;
return( (BX_PIT_THIS s.timer.read_OUT(2)<<5) |
(BX_PIT_THIS s.refresh_clock_div2<<4) |
(BX_PIT_THIS s.speaker_data_on<<1) |
(BX_PIT_THIS s.timer.read_GATE(2)?1:0) );
break;
default:
BX_PANIC(("pit: unsupported io read from port %04x", address));
}
return(0); /* keep compiler happy */
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void
bx_pit_c::write_handler(void *this_ptr, Bit32u address, Bit32u dvalue, unsigned io_len)
{
#if !BX_USE_PIT_SMF
bx_pit_c *class_ptr = (bx_pit_c *) this_ptr;
class_ptr->write(address, dvalue, io_len);
}
void
bx_pit_c::write( Bit32u address, Bit32u dvalue,
unsigned int io_len )
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PIT_SMF
Bit8u value;
Bit64u time_passed = bx_pc_system.time_usec()-BX_PIT_THIS s.last_usec;
Bit32u time_passed32 = time_passed;
BX_DEBUG(("pit: entering write handler"));
if(time_passed32) {
periodic(time_passed32);
}
BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed;
value = (Bit8u ) dvalue;
if (io_len > 1)
BX_PANIC(("pit: io write to port %04x, len=%u", (unsigned) address,
(unsigned) io_len));
if (bx_dbg.pit)
BX_INFO(("pit: write to port %04x = %02x",
(unsigned) address, (unsigned) value));
switch (address) {
case 0x40: /* timer 0: write count register */
BX_PIT_THIS s.timer.write(0,value);
break;
case 0x41: /* timer 1: write count register */
BX_PIT_THIS s.timer.write( 1,value );
break;
case 0x42: /* timer 2: write count register */
BX_PIT_THIS s.timer.write( 2,value );
break;
case 0x43: /* timer 0-2 mode control */
BX_PIT_THIS s.timer.write( 3,value );
break;
case 0x61:
BX_PIT_THIS s.speaker_data_on = (value >> 1) & 0x01;
/*??? only on AT+ */
BX_PIT_THIS s.timer.set_GATE(2, value & 0x01);
#if BX_CPU_LEVEL < 2
/* ??? XT: */
bx_kbd_port61h_write(value);
#endif
break;
default:
BX_PANIC(("pit: unsupported io write to port %04x = %02x",
(unsigned) address, (unsigned) value));
}
if ((BX_PIT_THIS s.timer.read_OUT(0))==1) {
bx_pic.raise_irq(0);
} else {
bx_pic.lower_irq(0);
}
if(time_passed ||
(BX_PIT_THIS s.last_next_event_time
!= BX_PIT_THIS s.timer.get_next_event_time())
) {
BX_DEBUG(("pit: RESETting timer."));
bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0],
MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
}
BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
}
int
bx_pit_c::SaveState( class state_file *fd )
{
fd->write_check ("8254 start");
fd->write (&BX_PIT_THIS s, sizeof (BX_PIT_THIS s));
fd->write_check ("8254 end");
return(0);
}
int
bx_pit_c::LoadState( class state_file *fd )
{
fd->read_check ("8254 start");
fd->read (&BX_PIT_THIS s, sizeof (BX_PIT_THIS s));
fd->read_check ("8254 end");
return(0);
}
#if 0
void
bx_kbd_port61h_write(Bit8u value)
{
// PcError("KBD_PORT61H_WRITE(): not implemented yet");
UNUSED( value );
}
#endif
Boolean
bx_pit_c::periodic( Bit32u usec_delta )
{
Boolean prev_timer0_out = BX_PIT_THIS s.timer.read_OUT(0);
Boolean want_interrupt = 0;
Bit32u ticks_delta = 0;
#if BX_USE_REALTIME_PIT
2002-02-09 01:27:51 +03:00
if(BX_PIT_THIS s.total_ticks < (MAX_MULT_CEILING*TICKS_PER_SECOND + (TICKS_PER_SECOND * BX_PIT_THIS s.total_sec))) {
2002-02-08 08:18:14 +03:00
ticks_delta=(Bit32u)(USEC_TO_TICKS(usec_delta));
BX_PIT_THIS s.total_ticks += ticks_delta;
}
second_update_data();
#else
BX_PIT_THIS s.total_usec += usec_delta;
ticks_delta=(Bit32u)((USEC_TO_TICKS((Bit64u)(BX_PIT_THIS s.total_usec)))-BX_PIT_THIS s.total_ticks);
BX_PIT_THIS s.total_ticks += ticks_delta;
while ((BX_PIT_THIS s.total_ticks >= 1193181) && (BX_PIT_THIS s.total_usec >= 1000000)) {
BX_PIT_THIS s.total_ticks -= 1193181;
BX_PIT_THIS s.total_usec -= 1000000;
}
#endif
while(ticks_delta>0) {
Bit32u maxchange=BX_PIT_THIS s.timer.get_next_event_time();
Bit32u timedelta=maxchange;
if((maxchange==0) || (maxchange>ticks_delta)) {
timedelta=ticks_delta;
}
BX_PIT_THIS s.timer.clock_all(timedelta);
if ( (prev_timer0_out==0) ) {
2002-01-31 20:26:26 +03:00
if ((BX_PIT_THIS s.timer.read_OUT(0))==1) {
bx_pic.raise_irq(0);
2002-01-31 20:26:26 +03:00
prev_timer0_out=1;
}
} else {
2002-01-31 20:26:26 +03:00
if ((BX_PIT_THIS s.timer.read_OUT(0))==0) {
bx_pic.lower_irq(0);
2002-01-31 20:26:26 +03:00
prev_timer0_out=0;
}
}
prev_timer0_out=BX_PIT_THIS s.timer.read_OUT(0);
ticks_delta-=timedelta;
}
return(want_interrupt);
}
#if BX_USE_REALTIME_PIT
void
bx_pit_c::second_update_data(void) {
Bit64u timediff=(time(NULL)*TIME_MULTIPLIER/TIME_DIVIDER)-BX_PIT_THIS s.last_time;
BX_PIT_THIS s.last_time += timediff;
if(timediff) {
Bit64s tickstemp;
BX_PIT_THIS s.total_sec += timediff;
2002-02-09 01:27:51 +03:00
#if DEBUG_REALTIME_WITH_PRINTF
printf("timediff: %lld, total_sec: %lld, total_ticks: %lld\n",timediff, BX_PIT_THIS s.total_sec, BX_PIT_THIS s.total_ticks);
#endif
tickstemp =
(((BX_PIT_THIS s.total_sec)*TICKS_PER_SECOND)-BX_PIT_THIS s.total_ticks)
+ TICKS_PER_SECOND;
// while((BX_PIT_THIS s.total_sec >= 0) && (BX_PIT_THIS s.total_ticks >= TICKS_PER_SECOND)) {
// BX_PIT_THIS s.total_sec -= 1;
// BX_PIT_THIS s.total_ticks -= TICKS_PER_SECOND;
// }
2002-02-08 08:18:14 +03:00
if(tickstemp > (TICKS_PER_SECOND*MAX_MULT)) {
2002-02-09 01:27:51 +03:00
#if DEBUG_REALTIME_WITH_PRINTF
printf("Running WAY too slow. tps:%lld\n",tickstemp);
#endif
2002-02-08 08:18:14 +03:00
tickstemp = TICKS_PER_SECOND*MAX_MULT_CEILING;
2002-02-09 01:27:51 +03:00
#if DEBUG_REALTIME_WITH_PRINTF
printf("..................... tps:%lld\n",tickstemp);
#endif
2002-02-08 08:18:14 +03:00
} else if(tickstemp < (TICKS_PER_SECOND*MIN_MULT)) {
2002-02-09 01:27:51 +03:00
#if DEBUG_REALTIME_WITH_PRINTF
printf("Running WAY too fast. tps:%lld\n",tickstemp);
#endif
2002-02-08 08:18:14 +03:00
tickstemp = TICKS_PER_SECOND*MIN_MULT_FLOOR;
2002-02-09 01:27:51 +03:00
#if DEBUG_REALTIME_WITH_PRINTF
printf("..................... tps:%lld\n",tickstemp);
#endif
}
BX_PIT_THIS s.ticks_per_second = tickstemp;
BX_PIT_THIS s.usec_per_second = ((bx_pc_system.time_usec()-BX_PIT_THIS s.last_sec_usec)/timediff)*USEC_ALPHA_B + USEC_ALPHA*BX_PIT_THIS s.usec_per_second;
BX_PIT_THIS s.last_sec_usec = bx_pc_system.time_usec();
2002-02-09 01:27:51 +03:00
#if DEBUG_REALTIME_WITH_PRINTF
printf("Parms: ticks_per_second=%lld, usec_per_second=%lld\n",BX_PIT_THIS s.ticks_per_second, BX_PIT_THIS s.usec_per_second);
#endif
}
}
#endif // #if BX_USE_REALTIME_PIT
#endif // #if BX_USE_NEW_PIT