Bochs/bochs/cpu/access.cc

1237 lines
38 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
2002-11-14 00:00:05 +03:00
// $Id: access.cc,v 1.35 2002-11-13 21:00:03 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif
#if BX_SUPPORT_X86_64
#define IsLongMode() (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
#define LPFOf(laddr) ((laddr) & BX_CONST64(0xfffffffffffff000))
#else
#define IsLongMode() (0)
#define LPFOf(laddr) ((laddr) & 0xfffff000)
#endif
void
BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, bx_address offset,
unsigned length)
{
Bit32u upper_limit;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
seg->cache.valid |= SegAccessWOK;
return;
}
#endif
if ( protected_mode() ) {
if ( seg->cache.valid==0 ) {
BX_ERROR(("seg = %s", BX_CPU_THIS_PTR strseg(seg)));
BX_ERROR(("seg->selector.value = %04x", (unsigned) seg->selector.value));
BX_ERROR(("write_virtual_checks: valid bit = 0"));
BX_ERROR(("CS: %04x", (unsigned) BX_CPU_THIS_PTR sregs[1].selector.value));
BX_ERROR(("IP: %04x", (unsigned) BX_CPU_THIS_PTR prev_eip));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
if (seg->cache.p == 0) { /* not present */
BX_INFO(("write_virtual_checks(): segment not present"));
exception(int_number(seg), 0, 0);
return;
}
switch ( seg->cache.type ) {
case 0: case 1: // read only
case 4: case 5: // read only, expand down
case 8: case 9: // execute only
case 10: case 11: // execute/read
case 12: case 13: // execute only, conforming
case 14: case 15: // execute/read-only, conforming
BX_INFO(("write_virtual_checks(): no write access to seg"));
exception(int_number(seg), 0, 0);
return;
case 2: case 3: /* read/write */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
BX_INFO(("write_virtual_checks(): write beyond limit, r/w"));
exception(int_number(seg), 0, 0);
return;
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding writes. The limit
// checks still needs to be done though, but is more simple. We
// could probably also optimize that out with a flag for the case
// when limit is the maximum 32bit value. Limit should accomodate
// at least a dword, since we subtract from it in the simple
// limit check in other functions, and we don't want the value to roll.
// Only normal segments (not expand down) are handled this way.
seg->cache.valid |= SegAccessWOK;
}
break;
case 6: case 7: /* read write, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if ( (offset <= seg->cache.u.segment.limit_scaled) ||
(offset > upper_limit) ||
((upper_limit - offset) < (length - 1)) ) {
BX_INFO(("write_virtual_checks(): write beyond limit, r/w ED"));
exception(int_number(seg), 0, 0);
return;
}
break;
}
return;
}
else { /* real mode */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
//BX_INFO(("write_virtual_checks() SEG EXCEPTION: %x:%x + %x",
// (unsigned) seg->selector.value, (unsigned) offset, (unsigned) length));
if (seg == & BX_CPU_THIS_PTR sregs[2]) exception(BX_SS_EXCEPTION, 0, 0);
else exception(BX_GP_EXCEPTION, 0, 0);
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding writes. See notes above.
seg->cache.valid |= SegAccessWOK;
}
}
}
void
BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, bx_address offset,
unsigned length)
{
Bit32u upper_limit;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
seg->cache.valid |= SegAccessROK;
return;
}
#endif
if ( protected_mode() ) {
if ( seg->cache.valid==0 ) {
BX_ERROR(("seg = %s", BX_CPU_THIS_PTR strseg(seg)));
BX_ERROR(("seg->selector.value = %04x", (unsigned) seg->selector.value));
//BX_ERROR(("read_virtual_checks: valid bit = 0"));
//BX_ERROR(("CS: %04x", (unsigned)
// BX_CPU_THIS_PTR sregs[1].selector.value));
//BX_ERROR(("IP: %04x", (unsigned) BX_CPU_THIS_PTR prev_eip));
//debug(EIP);
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
if (seg->cache.p == 0) { /* not present */
BX_INFO(("read_virtual_checks(): segment not present"));
exception(int_number(seg), 0, 0);
return;
}
switch ( seg->cache.type ) {
case 0: case 1: /* read only */
case 10: case 11: /* execute/read */
case 14: case 15: /* execute/read-only, conforming */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
BX_INFO(("read_virtual_checks(): write beyond limit"));
exception(int_number(seg), 0, 0);
return;
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding writes. See notes for
// write checks; similar code.
seg->cache.valid |= SegAccessROK;
}
break;
case 2: case 3: /* read/write */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
BX_INFO(("read_virtual_checks(): write beyond limit"));
exception(int_number(seg), 0, 0);
return;
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding writes. See notes for
// write checks; similar code.
seg->cache.valid |= SegAccessROK;
}
break;
case 4: case 5: /* read only, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if ( (offset <= seg->cache.u.segment.limit_scaled) ||
(offset > upper_limit) ||
((upper_limit - offset) < (length - 1)) ) {
BX_INFO(("read_virtual_checks(): write beyond limit"));
exception(int_number(seg), 0, 0);
return;
}
break;
case 6: case 7: /* read write, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if ( (offset <= seg->cache.u.segment.limit_scaled) ||
(offset > upper_limit) ||
((upper_limit - offset) < (length - 1)) ) {
BX_INFO(("read_virtual_checks(): write beyond limit"));
exception(int_number(seg), 0, 0);
return;
}
break;
case 8: case 9: /* execute only */
case 12: case 13: /* execute only, conforming */
/* can't read or write an execute-only segment */
BX_INFO(("read_virtual_checks(): execute only"));
exception(int_number(seg), 0, 0);
return;
break;
}
return;
}
else { /* real mode */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
//BX_ERROR(("read_virtual_checks() SEG EXCEPTION: %x:%x + %x",
2001-05-25 22:44:38 +04:00
// (unsigned) seg->selector.value, (unsigned) offset, (unsigned) length));
if (seg == & BX_CPU_THIS_PTR sregs[2]) exception(BX_SS_EXCEPTION, 0, 0);
else exception(BX_GP_EXCEPTION, 0, 0);
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding writes. See notes for
// write checks; similar code.
seg->cache.valid |= SegAccessROK;
}
return;
}
}
char *
BX_CPU_C::strseg(bx_segment_reg_t *seg)
{
if (seg == &BX_CPU_THIS_PTR sregs[0]) return("ES");
else if (seg == & BX_CPU_THIS_PTR sregs[1]) return("CS");
else if (seg == & BX_CPU_THIS_PTR sregs[2]) return("SS");
else if (seg == &BX_CPU_THIS_PTR sregs[3]) return("DS");
else if (seg == &BX_CPU_THIS_PTR sregs[4]) return("FS");
else if (seg == &BX_CPU_THIS_PTR sregs[5]) return("GS");
else {
BX_ERROR(("undefined segment passed to strseg()!"));
return("??");
}
}
void
BX_CPU_C::write_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ( IsLongMode() || (offset <= seg->cache.u.segment.limit_scaled) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 1, BX_WRITE);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
{
Bit32u accessBits;
Bit32u hostPageAddr;
Bit8u *hostAddr;
// See if the TLB entry privilege level allows us write access
// from this CPL.
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1 << (2 | pl)) ) {
#if BX_SupportICache
Bit32u *pageStamp;
pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12];
#endif
// Current write access has privilege.
if (hostPageAddr
#if BX_SupportICache
&& (*pageStamp & ICacheWriteStampMask)
#endif
) {
*hostAddr = *data;
#if BX_SupportICache
(*pageStamp)--;
#endif
return;
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 1, pl, BX_WRITE, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 1);
goto accessOK;
}
void
BX_CPU_C::write_virtual_word(unsigned s, bx_address offset, Bit16u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ( IsLongMode() || (offset < seg->cache.u.segment.limit_scaled) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 2, BX_WRITE);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf))
) {
Bit32u accessBits;
Bit32u hostPageAddr;
Bit16u *hostAddr;
// See if the TLB entry privilege level allows us write access
// from this CPL.
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1 << (2 | pl)) ) {
#if BX_SupportICache
Bit32u *pageStamp;
pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12];
#endif
// Current write access has privilege.
if (hostPageAddr
#if BX_SupportICache
&& (*pageStamp & ICacheWriteStampMask)
#endif
) {
WriteHostWordToLittleEndian(hostAddr, *data);
#if BX_SupportICache
(*pageStamp)--;
#endif
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 2, pl, BX_WRITE, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 2);
goto accessOK;
}
void
BX_CPU_C::write_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ( IsLongMode() || (offset < (seg->cache.u.segment.limit_scaled-2)) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 4, BX_WRITE);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf))
) {
Bit32u accessBits;
Bit32u hostPageAddr;
Bit32u *hostAddr;
// See if the TLB entry privilege level allows us write access
// from this CPL.
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1 << (2 | pl)) ) {
#if BX_SupportICache
Bit32u *pageStamp;
pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12];
#endif
// Current write access has privilege.
if (hostPageAddr
#if BX_SupportICache
&& (*pageStamp & ICacheWriteStampMask)
#endif
) {
WriteHostDWordToLittleEndian(hostAddr, *data);
#if BX_SupportICache
(*pageStamp)--;
#endif
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 4, pl, BX_WRITE, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 4);
goto accessOK;
}
void
BX_CPU_C::read_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessROK) {
if ( IsLongMode() || (offset <= seg->cache.u.segment.limit_scaled) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 1, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
Bit32u accessBits;
Bit32u hostPageAddr;
Bit8u *hostAddr;
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1<<pl) ) { // Read this pl OK.
if (hostPageAddr) {
*data = *hostAddr;
return;
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 1, pl, BX_READ, (void *) data);
return;
}
}
read_virtual_checks(seg, offset, 1);
goto accessOK;
}
void
BX_CPU_C::read_virtual_word(unsigned s, bx_address offset, Bit16u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessROK) {
if ( IsLongMode() || (offset < seg->cache.u.segment.limit_scaled) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 2, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
Bit32u accessBits;
Bit32u hostPageAddr;
Bit16u *hostAddr;
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1<<pl) ) { // Read this pl OK.
if (hostPageAddr) {
ReadHostWordFromLittleEndian(hostAddr, *data);
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 2, pl, BX_READ, (void *) data);
return;
}
}
read_virtual_checks(seg, offset, 2);
goto accessOK;
}
void
BX_CPU_C::read_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessROK) {
if ( IsLongMode() || (offset < (seg->cache.u.segment.limit_scaled-2)) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 4, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
Bit32u accessBits;
Bit32u hostPageAddr;
Bit32u *hostAddr;
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1<<pl) ) { // Read this pl OK.
if (hostPageAddr) {
ReadHostDWordFromLittleEndian(hostAddr, *data);
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 4, pl, BX_READ, (void *) data);
return;
}
}
read_virtual_checks(seg, offset, 4);
goto accessOK;
}
//////////////////////////////////////////////////////////////
// special Read-Modify-Write operations //
// address translation info is kept across read/write calls //
//////////////////////////////////////////////////////////////
void
BX_CPU_C::read_RMW_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ( IsLongMode() || (offset <= seg->cache.u.segment.limit_scaled) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 1, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf))
) {
Bit32u accessBits;
Bit32u hostPageAddr;
Bit8u *hostAddr;
// See if the TLB entry privilege level allows us write access
// from this CPL.
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1 << (2 | pl)) ) {
#if BX_SupportICache
Bit32u *pageStamp;
pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12];
#endif
// Current write access has privilege.
if (hostPageAddr
#if BX_SupportICache
&& (*pageStamp & ICacheWriteStampMask)
#endif
) {
*data = *hostAddr;
BX_CPU_THIS_PTR address_xlation.pages = (Bit32u) hostAddr;
#if BX_SupportICache
(*pageStamp)--;
#endif
return;
}
}
}
}
#endif // BX_SupportGuest2HostTLB
// Accelerated attempt falls through to long path. Do it the
// old fashioned way...
access_linear(laddr, 1, pl, BX_RW, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 1);
goto accessOK;
}
void
BX_CPU_C::read_RMW_virtual_word(unsigned s, bx_address offset, Bit16u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ( IsLongMode() || (offset < seg->cache.u.segment.limit_scaled) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 2, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf))
) {
Bit32u accessBits;
Bit32u hostPageAddr;
Bit16u *hostAddr;
// See if the TLB entry privilege level allows us write access
// from this CPL.
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1 << (2 | pl)) ) {
#if BX_SupportICache
Bit32u *pageStamp;
pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12];
#endif
// Current write access has privilege.
if (hostPageAddr
#if BX_SupportICache
&& (*pageStamp & ICacheWriteStampMask)
#endif
) {
ReadHostWordFromLittleEndian(hostAddr, *data);
BX_CPU_THIS_PTR address_xlation.pages = (Bit32u) hostAddr;
#if BX_SupportICache
(*pageStamp)--;
#endif
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 2, pl, BX_RW, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 2);
goto accessOK;
}
void
BX_CPU_C::read_RMW_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ( IsLongMode() || (offset < (seg->cache.u.segment.limit_scaled-2)) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 4, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf))
) {
Bit32u accessBits;
Bit32u hostPageAddr;
Bit32u *hostAddr;
// See if the TLB entry privilege level allows us write access
// from this CPL.
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1 << (2 | pl)) ) {
#if BX_SupportICache
Bit32u *pageStamp;
pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12];
#endif
// Current write access has privilege.
if (hostPageAddr
#if BX_SupportICache
&& (*pageStamp & ICacheWriteStampMask)
#endif
) {
ReadHostDWordFromLittleEndian(hostAddr, *data);
BX_CPU_THIS_PTR address_xlation.pages = (Bit32u) hostAddr;
#if BX_SupportICache
(*pageStamp)--;
#endif
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 4, pl, BX_RW, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 4);
goto accessOK;
}
void
BX_CPU_C::write_RMW_virtual_byte(Bit8u val8)
{
BX_INSTR_MEM_DATA(CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE);
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit8u * hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages;
* hostAddr = val8;
}
else {
// address_xlation.pages must be 1
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8);
}
}
void
BX_CPU_C::write_RMW_virtual_word(Bit16u val16)
{
BX_INSTR_MEM_DATA(CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE);
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostWordToLittleEndian(hostAddr, val16);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16);
}
else {
#ifdef BX_LITTLE_ENDIAN
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16);
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1);
#else
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1);
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16);
#endif
}
}
void
BX_CPU_C::write_RMW_virtual_dword(Bit32u val32)
{
BX_INSTR_MEM_DATA(CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE);
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostDWordToLittleEndian(hostAddr, val32);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32);
}
else {
#ifdef BX_LITTLE_ENDIAN
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
&val32);
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
#else
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
&val32);
#endif
}
}
void
BX_CPU_C::write_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ( IsLongMode() || (offset <= (seg->cache.u.segment.limit_scaled-7)) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 8, BX_WRITE);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf))
) {
Bit32u accessBits;
Bit32u hostPageAddr;
Bit64u *hostAddr;
// See if the TLB entry privilege level allows us write access
// from this CPL.
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1 << (2 | pl)) ) {
#if BX_SupportICache
Bit32u *pageStamp;
pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12];
#endif
// Current write access has privilege.
if (hostPageAddr
#if BX_SupportICache
&& (*pageStamp & ICacheWriteStampMask)
#endif
) {
WriteHostQWordToLittleEndian(hostAddr, *data);
#if BX_SupportICache
(*pageStamp)--;
#endif
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 8, pl, BX_WRITE, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 8);
goto accessOK;
}
void
BX_CPU_C::read_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessROK) {
if ( IsLongMode() || (offset <= (seg->cache.u.segment.limit_scaled-7)) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 8, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
Bit32u accessBits;
Bit32u hostPageAddr;
Bit64u *hostAddr;
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1<<pl) ) { // Read this pl OK.
if (hostPageAddr) {
ReadHostQWordFromLittleEndian(hostAddr, *data);
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 8, pl, BX_READ, (void *) data);
return;
}
}
read_virtual_checks(seg, offset, 8);
goto accessOK;
}
void
BX_CPU_C::write_RMW_virtual_qword(Bit64u val64)
{
BX_INSTR_MEM_DATA(CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 8, BX_WRITE);
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostQWordToLittleEndian(hostAddr, val64);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64);
}
else {
#ifdef BX_LITTLE_ENDIAN
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
&val64);
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
#else
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
BX_CPU_THIS_PTR mem->writePhysicalPage(this,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
&val64);
#endif
}
}
void
BX_CPU_C::read_RMW_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ( IsLongMode() || (offset <= (seg->cache.u.segment.limit_scaled-7)) ) {
unsigned pl;
accessOK:
laddr = seg->cache.u.segment.base + offset;
BX_INSTR_MEM_DATA(CPU_ID, laddr, 8, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
{
bx_address lpf;
Bit32u tlbIndex, pageOffset;
pageOffset = laddr & 0xfff;
if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages.
tlbIndex = BX_TLB_INDEX_OF(laddr);
lpf = LPFOf(laddr);
if ( (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf))
) {
Bit32u accessBits;
Bit32u hostPageAddr;
Bit32u *hostAddr;
// See if the TLB entry privilege level allows us write access
// from this CPL.
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
if ( accessBits & (1 << (2 | pl)) ) {
#if BX_SupportICache
Bit32u *pageStamp;
pageStamp = & BX_CPU_THIS_PTR iCache.pageWriteStampTable[
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf>>12];
#endif
// Current write access has privilege.
if (hostPageAddr
#if BX_SupportICache
&& (*pageStamp & ICacheWriteStampMask)
#endif
) {
ReadHostQWordFromLittleEndian(hostAddr, *data);
BX_CPU_THIS_PTR address_xlation.pages = (Bit32u) hostAddr;
#if BX_SupportICache
(*pageStamp)--;
#endif
return;
}
}
}
}
}
#endif // BX_SupportGuest2HostTLB
access_linear(laddr, 8, pl, BX_RW, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 8);
goto accessOK;
}
2002-11-14 00:00:05 +03:00
#if BX_SUPPORT_SSE != 0
// Some macro defs to make things cleaner for endian-ness issues.
// The following routines access a double qword, ie 16-bytes.
// For the moment, I redirect these to use the single qword routines
// by splitting one access into two.
//
// Endian Host byte order Guest (x86) byte order
// ======================================================
// Little 0..7 8..15 0..7 8..15
// Big 15..8 7...0 0..7 8..15
//
// Below are the host memory offsets to each of 2 single quadwords, which
// are different across big an little endian machines. The memory
// accessing routines take care of the access endian issues when accessing
// the physical memory image.
#ifdef BX_LITTLE_ENDIAN
# define Host1stDWordOffset 0
# define Host2ndDWordOffset 8
#else
# define Host1stDWordOffset 8
# define Host2ndDWordOffset 0
#endif
void
BX_CPU_C::readVirtualDQword(unsigned s, bx_address offset, Bit8u *data)
{
// Read Double Quadword.
Bit64u *qwords = (Bit64u*) data;
read_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]);
read_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]);
}
void
BX_CPU_C::readVirtualDQwordAligned(unsigned s, bx_address offset, Bit8u *data)
{
// Read Double Quadword; access must be aligned on 16-byte boundary.
Bit64u *qwords = (Bit64u*) data;
// If double quadword access is unaligned, #GP(0).
if (offset & 0xf)
exception(BX_GP_EXCEPTION, 0, 0);
read_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]);
read_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]);
}
void
BX_CPU_C::writeVirtualDQword(unsigned s, bx_address offset, Bit8u *data)
{
// Write Double Quadword.
Bit64u *qwords = (Bit64u*) data;
write_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]);
write_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]);
}
void
BX_CPU_C::writeVirtualDQwordAligned(unsigned s, bx_address offset, Bit8u *data)
{
// Write Double Quadword; access must be aligned on 16-byte boundary.
Bit64u *qwords = (Bit64u*) data;
// If double quadword access is unaligned, #GP(0).
if (offset & 0xf)
exception(BX_GP_EXCEPTION, 0, 0);
write_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]);
write_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]);
}
#endif // #if BX_SUPPORT_SSE