Bochs/bochs/iodev/hdimage/hdimage.cc

2365 lines
61 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2015 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#ifdef BXIMAGE
#include "config.h"
#include "misc/bxcompat.h"
#include "osdep.h"
#include "misc/bswap.h"
#else
#include "iodev.h"
#include "cdrom.h"
#include "cdrom_amigaos.h"
#include "cdrom_misc.h"
#include "cdrom_osx.h"
#include "cdrom_win32.h"
#endif
#include "hdimage.h"
#include "vmware3.h"
#include "vmware4.h"
#include "vvfat.h"
#include "vpc-img.h"
#include "vbox.h"
#if BX_HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#ifdef linux
#include <linux/fs.h>
#include <sys/ioctl.h>
#include <sys/wait.h>
#endif
#define LOG_THIS theHDImageCtl->
#ifndef BXIMAGE
bx_hdimage_ctl_c* theHDImageCtl = NULL;
int CDECL libhdimage_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
if (type == PLUGTYPE_CORE) {
theHDImageCtl = new bx_hdimage_ctl_c;
bx_devices.pluginHDImageCtl = theHDImageCtl;
return 0; // Success
} else {
return -1;
}
}
void CDECL libhdimage_LTX_plugin_fini(void)
{
delete theHDImageCtl;
}
bx_hdimage_ctl_c::bx_hdimage_ctl_c()
{
put("hdimage", "IMG");
}
device_image_t* bx_hdimage_ctl_c::init_image(Bit8u image_mode, Bit64u disk_size, const char *journal)
{
device_image_t *hdimage = NULL;
// instantiate the right class
switch (image_mode) {
case BX_HDIMAGE_MODE_FLAT:
hdimage = new flat_image_t();
break;
case BX_HDIMAGE_MODE_CONCAT:
hdimage = new concat_image_t();
break;
#if EXTERNAL_DISK_SIMULATOR
case BX_HDIMAGE_MODE_EXTDISKSIM:
hdimage = new EXTERNAL_DISK_SIMULATOR_CLASS();
break;
#endif //EXTERNAL_DISK_SIMULATOR
#ifdef WIN32
case BX_HDIMAGE_MODE_DLL_HD:
hdimage = new dll_image_t();
break;
#endif //DLL_HD_SUPPORT
case BX_HDIMAGE_MODE_SPARSE:
hdimage = new sparse_image_t();
break;
case BX_HDIMAGE_MODE_VMWARE3:
hdimage = new vmware3_image_t();
break;
case BX_HDIMAGE_MODE_VMWARE4:
hdimage = new vmware4_image_t();
break;
case BX_HDIMAGE_MODE_UNDOABLE:
hdimage = new undoable_image_t(journal);
break;
case BX_HDIMAGE_MODE_GROWING:
hdimage = new growing_image_t();
break;
case BX_HDIMAGE_MODE_VOLATILE:
hdimage = new volatile_image_t(journal);
break;
case BX_HDIMAGE_MODE_VVFAT:
hdimage = new vvfat_image_t(disk_size, journal);
break;
case BX_HDIMAGE_MODE_VPC:
hdimage = new vpc_image_t();
break;
case BX_HDIMAGE_MODE_VBOX:
hdimage = new vbox_image_t();
break;
default:
BX_PANIC(("unsupported HD mode : '%s'", hdimage_mode_names[image_mode]));
break;
}
return hdimage;
}
cdrom_base_c* bx_hdimage_ctl_c::init_cdrom(const char *dev)
{
#if BX_SUPPORT_CDROM
return new LOWLEVEL_CDROM(dev);
#else
return new cdrom_base_c(dev);
#endif
}
#endif // ifndef BXIMAGE
// helper functions
int bx_read_image(int fd, Bit64s offset, void *buf, int count)
{
if (lseek(fd, offset, SEEK_SET) == -1) {
return -1;
}
return read(fd, buf, count);
}
int bx_write_image(int fd, Bit64s offset, void *buf, int count)
{
if (lseek(fd, offset, SEEK_SET) == -1) {
return -1;
}
return write(fd, buf, count);
}
#ifndef WIN32
int hdimage_open_file(const char *pathname, int flags, Bit64u *fsize, time_t *mtime)
#else
int hdimage_open_file(const char *pathname, int flags, Bit64u *fsize, FILETIME *mtime)
#endif
{
#ifdef WIN32
if (fsize != NULL) {
HANDLE hFile = CreateFile(pathname, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_FLAG_RANDOM_ACCESS, NULL);
if (hFile != INVALID_HANDLE_VALUE) {
ULARGE_INTEGER FileSize;
FileSize.LowPart = GetFileSize(hFile, &FileSize.HighPart);
if (mtime != NULL) {
GetFileTime(hFile, NULL, NULL, mtime);
}
CloseHandle(hFile);
if ((FileSize.LowPart != INVALID_FILE_SIZE) || (GetLastError() == NO_ERROR)) {
*fsize = FileSize.QuadPart;
} else {
return -1;
}
} else {
return -1;
}
}
#endif
int fd = ::open(pathname, flags
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
return fd;
}
#ifndef WIN32
if (fsize != NULL) {
struct stat stat_buf;
if (fstat(fd, &stat_buf)) {
BX_PANIC(("fstat() returns error!"));
return -1;
}
#ifdef linux
if (stat_buf.st_rdev) { // Is this a special device file (e.g. /dev/sde) ?
ioctl(fd, BLKGETSIZE64, fsize); // yes it's!
}
else
#endif
{
*fsize = (Bit64u)stat_buf.st_size; // standard unix procedure to get size of regular files
}
if (mtime != NULL) {
*mtime = stat_buf.st_mtime;
}
}
#endif
return fd;
}
int hdimage_detect_image_mode(const char *pathname)
{
int result = BX_HDIMAGE_MODE_UNKNOWN;
Bit64u image_size = 0;
int fd = hdimage_open_file(pathname, O_RDONLY, &image_size, NULL);
if (fd < 0) {
return result;
}
if (sparse_image_t::check_format(fd, image_size) == HDIMAGE_FORMAT_OK) {
result = BX_HDIMAGE_MODE_SPARSE;
} else if (vmware3_image_t::check_format(fd, image_size) == HDIMAGE_FORMAT_OK) {
result = BX_HDIMAGE_MODE_VMWARE3;
} else if (vmware4_image_t::check_format(fd, image_size) == HDIMAGE_FORMAT_OK) {
result = BX_HDIMAGE_MODE_VMWARE4;
} else if (growing_image_t::check_format(fd, image_size) == HDIMAGE_FORMAT_OK) {
result = BX_HDIMAGE_MODE_GROWING;
} else if (vpc_image_t::check_format(fd, image_size) >= HDIMAGE_FORMAT_OK) {
result = BX_HDIMAGE_MODE_VPC;
} else if (vbox_image_t::check_format(fd, image_size) >= HDIMAGE_FORMAT_OK) {
result = BX_HDIMAGE_MODE_VBOX;
} else if (flat_image_t::check_format(fd, image_size) == HDIMAGE_FORMAT_OK) {
result = BX_HDIMAGE_MODE_FLAT;
}
::close(fd);
return result;
}
// if return_time==0, this returns the fat_date, else the fat_time
#ifndef WIN32
Bit16u fat_datetime(time_t time, int return_time)
{
struct tm* t;
struct tm t1;
t = &t1;
localtime_r(&time, t);
if (return_time)
return htod16((t->tm_sec/2) | (t->tm_min<<5) | (t->tm_hour<<11));
return htod16((t->tm_mday) | ((t->tm_mon+1)<<5) | ((t->tm_year-80)<<9));
}
#else
Bit16u fat_datetime(FILETIME time, int return_time)
{
SYSTEMTIME gmtsystime, systime;
TIME_ZONE_INFORMATION tzi;
FileTimeToSystemTime(&time, &gmtsystime);
GetTimeZoneInformation(&tzi);
SystemTimeToTzSpecificLocalTime(&tzi, &gmtsystime, &systime);
if (return_time)
return htod16((systime.wSecond/2) | (systime.wMinute<<5) | (systime.wHour<<11));
return htod16((systime.wDay) | (systime.wMonth<<5) | ((systime.wYear-1980)<<9));
}
#endif
#ifndef BXIMAGE
// generic save/restore functions
Bit64s hdimage_save_handler(void *class_ptr, bx_param_c *param)
{
char imgname[BX_PATHNAME_LEN];
char path[BX_PATHNAME_LEN];
param->get_param_path(imgname, BX_PATHNAME_LEN);
if (!strncmp(imgname, "bochs.", 6)) {
strcpy(imgname, imgname+6);
}
if (SIM->get_param_string(BXPN_RESTORE_PATH)->isempty()) {
return 0;
}
sprintf(path, "%s/%s", SIM->get_param_string(BXPN_RESTORE_PATH)->getptr(), imgname);
return ((device_image_t*)class_ptr)->save_state(path);
}
void hdimage_restore_handler(void *class_ptr, bx_param_c *param, Bit64s value)
{
char imgname[BX_PATHNAME_LEN];
char path[BX_PATHNAME_LEN];
if (value != 0) {
param->get_param_path(imgname, BX_PATHNAME_LEN);
if (!strncmp(imgname, "bochs.", 6)) {
strcpy(imgname, imgname+6);
}
sprintf(path, "%s/%s", SIM->get_param_string(BXPN_RESTORE_PATH)->getptr(), imgname);
((device_image_t*)class_ptr)->restore_state(path);
}
}
bx_bool hdimage_backup_file(int fd, const char *backup_fname)
{
char *buf;
off_t offset;
int nread, size;
bx_bool ret = 1;
int backup_fd = ::open(backup_fname, O_RDWR | O_CREAT | O_TRUNC
#ifdef O_BINARY
| O_BINARY
#endif
, S_IWUSR | S_IRUSR | S_IRGRP | S_IWGRP);
if (backup_fd >= 0) {
offset = 0;
size = 0x20000;
buf = (char*)malloc(size);
if (buf == NULL) {
::close(backup_fd);
return 0;
}
while ((nread = bx_read_image(fd, offset, buf, size)) > 0) {
if (bx_write_image(backup_fd, offset, buf, nread) < 0) {
ret = 0;
break;
}
if (nread < size) {
break;
}
offset += size;
};
if (nread < 0) {
ret = 0;
}
free(buf);
::close(backup_fd);
return ret;
}
return 0;
}
#endif
bx_bool hdimage_copy_file(const char *src, const char *dst)
{
#ifdef WIN32
return (bx_bool)CopyFile(src, dst, FALSE);
#elif defined(linux)
pid_t pid, ws;
if ((src == NULL) || (dst == NULL)) {
return 0;
}
if (!(pid = fork())) {
execl("/bin/cp", "/bin/cp", src, dst, (char *)0);
return 0;
}
wait(&ws);
if (!WIFEXITED(ws)) {
return -1;
}
return (WEXITSTATUS(ws) == 0);
#else
int fd1, fd2;
char *buf;
off_t offset;
int nread, size;
bx_bool ret = 1;
fd1 = ::open(src, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd1 < 0) return 0;
fd2 = ::open(dst, O_RDWR | O_CREAT | O_TRUNC
#ifdef O_BINARY
| O_BINARY
#endif
, S_IWUSR | S_IRUSR | S_IRGRP | S_IWGRP);
if (fd2 < 0) {
::close(fd1);
return 0;
}
offset = 0;
size = 0x20000;
buf = (char*)malloc(size);
if (buf == NULL) {
::close(fd1);
::close(fd2);
return 0;
}
while ((nread = bx_read_image(fd1, offset, buf, size)) > 0) {
if (bx_write_image(fd2, offset, buf, nread) < 0) {
ret = 0;
break;
}
if (nread < size) {
break;
}
offset += size;
};
if (nread < 0) {
ret = 0;
}
free(buf);
::close(fd1);
::close(fd2);
return ret;
#endif
}
/*** base class device_image_t ***/
device_image_t::device_image_t()
{
hd_size = 0;
}
int device_image_t::open(const char* _pathname)
{
return open(_pathname, O_RDWR);
}
Bit32u device_image_t::get_capabilities()
{
return (cylinders == 0) ? HDIMAGE_AUTO_GEOMETRY : 0;
}
Bit32u device_image_t::get_timestamp()
{
return (fat_datetime(mtime, 1) | (fat_datetime(mtime, 0) << 16));
}
#ifndef BXIMAGE
void device_image_t::register_state(bx_list_c *parent)
{
bx_param_bool_c *image = new bx_param_bool_c(parent, "image", NULL, NULL, 0);
image->set_sr_handlers(this, hdimage_save_handler, hdimage_restore_handler);
}
#endif
/*** flat_image_t function definitions ***/
int flat_image_t::open(const char* _pathname, int flags)
{
pathname = _pathname;
if ((fd = hdimage_open_file(pathname, flags, &hd_size, &mtime)) < 0) {
return -1;
}
2014-12-01 20:06:00 +03:00
BX_INFO(("hd_size: " FMT_LL "u", hd_size));
if (hd_size <= 0) BX_PANIC(("size of disk image not detected / invalid"));
if ((hd_size % 512) != 0) BX_PANIC(("size of disk image must be multiple of 512 bytes"));
return fd;
}
void flat_image_t::close()
{
if (fd > -1) {
::close(fd);
}
}
Bit64s flat_image_t::lseek(Bit64s offset, int whence)
{
return (Bit64s)::lseek(fd, (off_t)offset, whence);
}
ssize_t flat_image_t::read(void* buf, size_t count)
{
return ::read(fd, (char*) buf, count);
}
ssize_t flat_image_t::write(const void* buf, size_t count)
{
return ::write(fd, (char*) buf, count);
}
int flat_image_t::check_format(int fd, Bit64u imgsize)
{
char buffer[512];
if ((imgsize <= 0) || ((imgsize % 512) != 0)) {
return HDIMAGE_SIZE_ERROR;
} else if (bx_read_image(fd, 0, buffer, 512) < 0) {
return HDIMAGE_READ_ERROR;
} else {
return HDIMAGE_FORMAT_OK;
}
}
#ifndef BXIMAGE
bx_bool flat_image_t::save_state(const char *backup_fname)
{
return hdimage_backup_file(fd, backup_fname);
}
void flat_image_t::restore_state(const char *backup_fname)
{
close();
if (!hdimage_copy_file(backup_fname, pathname)) {
BX_PANIC(("Failed to restore image '%s'", pathname));
return;
}
if (device_image_t::open(pathname) < 0) {
BX_PANIC(("Failed to open restored image '%s'", pathname));
}
}
#endif
// helper function for concat and sparse mode images
char increment_string(char *str, int diff)
{
// find the last character of the string, and increment it.
char *p = str;
while (*p != 0) p++;
BX_ASSERT(p>str); // choke on zero length strings
p--; // point to last character of the string
(*p) += diff; // increment to next/previous ascii code.
BX_DEBUG(("increment string returning '%s'", str));
return (*p);
}
/*** concat_image_t function definitions ***/
concat_image_t::concat_image_t()
{
fd = -1;
}
void concat_image_t::increment_string(char *str)
{
::increment_string(str, +1);
}
int concat_image_t::open(const char* _pathname0, int flags)
{
UNUSED(flags);
pathname0 = _pathname0;
char *pathname = strdup(pathname0);
BX_DEBUG(("concat_image_t::open"));
Bit64s start_offset = 0;
for (int i=0; i<BX_CONCAT_MAX_IMAGES; i++) {
fd_table[i] = ::open(pathname, O_RDWR
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd_table[i] < 0) {
// open failed.
// if no FD was opened successfully, return -1 (fail).
if (i==0) return -1;
// otherwise, it only means that all images in the series have
// been opened. Record the number of fds opened successfully.
maxfd = i;
break;
}
BX_DEBUG(("concat_image: open image %s, fd[%d] = %d", pathname, i, fd_table[i]));
/* look at size of image file to calculate disk geometry */
struct stat stat_buf;
int ret = fstat(fd_table[i], &stat_buf);
if (ret) {
BX_PANIC(("fstat() returns error!"));
}
#ifdef S_ISBLK
if (S_ISBLK(stat_buf.st_mode)) {
BX_PANIC(("block devices should REALLY NOT be used as concat images"));
}
#endif
if ((stat_buf.st_size % 512) != 0) {
BX_PANIC(("size of disk image must be multiple of 512 bytes"));
}
length_table[i] = stat_buf.st_size;
start_offset_table[i] = start_offset;
start_offset += stat_buf.st_size;
increment_string(pathname);
}
free(pathname);
// start up with first image selected
index = 0;
fd = fd_table[0];
thismin = 0;
thismax = length_table[0]-1;
seek_was_last_op = 0;
hd_size = start_offset;
2014-12-01 20:06:00 +03:00
BX_INFO(("hd_size: " FMT_LL "u", hd_size));
return 0; // success.
}
void concat_image_t::close()
{
BX_DEBUG(("concat_image_t.close"));
for (int index = 0; index < maxfd; index++) {
if (fd_table[index] > -1) {
::close(fd_table[index]);
}
}
}
Bit64s concat_image_t::lseek(Bit64s offset, int whence)
{
if ((offset % 512) != 0)
BX_PANIC(("lseek HD with offset not multiple of 512"));
BX_DEBUG(("concat_image_t.lseek(%d)", whence));
total_offset = offset;
// is this offset in this disk image?
if (offset < thismin) {
// no, look at previous images
for (int i=index-1; i>=0; i--) {
if (offset >= start_offset_table[i]) {
index = i;
fd = fd_table[i];
thismin = start_offset_table[i];
thismax = thismin + length_table[i] - 1;
BX_DEBUG(("concat_image_t.lseek to earlier image, index=%d", index));
break;
}
}
} else if (offset > thismax) {
// no, look at later images
for (int i=index+1; i<maxfd; i++) {
if (offset < start_offset_table[i] + length_table[i]) {
index = i;
fd = fd_table[i];
thismin = start_offset_table[i];
thismax = thismin + length_table[i] - 1;
BX_DEBUG(("concat_image_t.lseek to earlier image, index=%d", index));
break;
}
}
}
// now offset should be within the current image.
offset -= start_offset_table[index];
if (offset < 0 || offset >= length_table[index]) {
BX_PANIC(("concat_image_t.lseek to byte %ld failed", (long)offset));
return -1;
}
seek_was_last_op = 1;
return (Bit64s)::lseek(fd, (off_t)offset, whence);
}
ssize_t concat_image_t::read(void* buf, size_t count)
{
size_t count1;
ssize_t ret = -1;
char *buf1 = (char*)buf;
BX_DEBUG(("concat_image_t.read %ld bytes", (long)count));
// notice if anyone does sequential read or write without seek in between.
// This can be supported pretty easily, but needs additional checks for
// end of a partial image.
if (!seek_was_last_op)
BX_PANIC(("no seek before read"));
if ((Bit64s)(total_offset + count - 1) <= thismax) {
return ::read(fd, buf1, count);
} else {
2014-01-25 21:07:10 +04:00
count1 = (size_t)(thismax - total_offset + 1);
ret = ::read(fd, buf1, count1);
if (ret >= 0) {
buf1 += count1;
ret = lseek(thismax + 1, SEEK_SET);
if (ret >= 0) {
ret = ::read(fd, buf1, count - count1);
}
}
}
return (ret < 0) ? ret : count;
}
ssize_t concat_image_t::write(const void* buf, size_t count)
{
size_t count1;
ssize_t ret = -1;
char *buf1 = (char*)buf;
BX_DEBUG(("concat_image_t.write %ld bytes", (long)count));
// notice if anyone does sequential read or write without seek in between.
// This can be supported pretty easily, but needs additional checks for
// end of a partial image.
if (!seek_was_last_op)
BX_PANIC(("no seek before write"));
if ((Bit64s)(total_offset + count - 1) <= thismax) {
return ::write(fd, buf1, count);
} else {
2014-01-25 21:07:10 +04:00
count1 = (size_t)(thismax - total_offset + 1);
ret = ::write(fd, buf1, count1);
if (ret >= 0) {
buf1 += count1;
ret = lseek(thismax + 1, SEEK_SET);
if (ret >= 0) {
ret = ::write(fd, buf1, count - count1);
}
}
}
return (ret < 0) ? ret : count;
}
#ifndef BXIMAGE
bx_bool concat_image_t::save_state(const char *backup_fname)
{
bx_bool ret = 1;
char tempfn[BX_PATHNAME_LEN];
for (int index = 0; index < maxfd; index++) {
sprintf(tempfn, "%s%d", backup_fname, index);
ret &= hdimage_backup_file(fd_table[index], tempfn);
if (ret == 0) break;
}
return ret;
}
void concat_image_t::restore_state(const char *backup_fname)
{
char tempfn[BX_PATHNAME_LEN];
close();
char *image_name = strdup(pathname0);
for (int index = 0; index < maxfd; index++) {
sprintf(tempfn, "%s%d", backup_fname, index);
if (!hdimage_copy_file(tempfn, image_name)) {
BX_PANIC(("Failed to restore concat image '%s'", image_name));
free(image_name);
return;
}
increment_string(image_name);
}
free(image_name);
device_image_t::open(pathname0);
}
#endif
/*** sparse_image_t function definitions ***/
sparse_image_t::sparse_image_t()
{
fd = -1;
pathname = NULL;
#ifdef _POSIX_MAPPED_FILES
mmap_header = NULL;
#endif
pagetable = NULL;
parent_image = NULL;
}
/*
void showpagetable(Bit32u * pagetable, size_t numpages)
{
printf("Non null pages: ");
for (int i = 0; i < numpages; i++)
{
if (pagetable[i] != 0xffffffff)
{
printf("%d ", i);
}
}
printf("\n");
}
*/
int sparse_image_t::read_header()
{
BX_ASSERT(sizeof(header) == SPARSE_HEADER_SIZE);
int ret = check_format(fd, underlying_filesize);
if (ret != HDIMAGE_FORMAT_OK) {
switch (ret) {
case HDIMAGE_READ_ERROR:
BX_PANIC(("sparse: could not read entire header"));
break;
case HDIMAGE_NO_SIGNATURE:
BX_PANIC(("sparse: failed header magic check"));
break;
case HDIMAGE_VERSION_ERROR:
BX_PANIC(("sparse: unknown version in header"));
break;
}
return -1;
}
ret = bx_read_image(fd, 0, &header, sizeof(header));
if (ret < 0) {
return -1;
}
pagesize = dtoh32(header.pagesize);
Bit32u numpages = dtoh32(header.numpages);
total_size = pagesize;
total_size *= numpages;
pagesize_shift = 0;
while ((pagesize >> pagesize_shift) > 1) pagesize_shift++;
if ((Bit32u)(1 << pagesize_shift) != pagesize) {
panic("failed block size header check");
}
pagesize_mask = pagesize - 1;
size_t preamble_size = (sizeof(Bit32u) * numpages) + sizeof(header);
data_start = 0;
while ((size_t)data_start < preamble_size) data_start += pagesize;
bx_bool did_mmap = 0;
#ifdef _POSIX_MAPPED_FILES
// Try to memory map from the beginning of the file (0 is trivially a page multiple)
void *mmap_header = mmap(NULL, preamble_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (mmap_header == MAP_FAILED) {
BX_INFO(("failed to mmap sparse disk file - using conventional file access"));
mmap_header = NULL;
}
else
{
mmap_length = preamble_size;
did_mmap = 1;
pagetable = ((Bit32u *) (((Bit8u *) mmap_header) + sizeof(header)));
system_pagesize_mask = getpagesize() - 1;
}
#endif
if (!did_mmap) {
pagetable = new Bit32u[numpages];
if (pagetable == NULL) {
panic("could not allocate memory for sparse disk block table");
}
ret = ::read(fd, pagetable, sizeof(Bit32u) * numpages);
if (ret < 0) {
panic(strerror(errno));
}
if ((int)(sizeof(Bit32u) * numpages) != ret) {
panic("could not read entire block table");
}
}
return 0;
}
int sparse_image_t::open(const char* pathname0, int flags)
{
pathname = strdup(pathname0);
BX_DEBUG(("sparse_image_t::open"));
if ((fd = hdimage_open_file(pathname, flags, &underlying_filesize, &mtime)) < 0) {
return -1;
}
BX_DEBUG(("sparse_image: open image %s", pathname));
if (read_header() < 0) {
return -1;
}
if ((underlying_filesize % pagesize) != 0)
panic("size of sparse disk image is not multiple of page size");
underlying_current_filepos = 0;
if (-1 == ::lseek(fd, 0, SEEK_SET))
panic("error while seeking to start of file");
lseek(0, SEEK_SET);
//showpagetable(pagetable, header.numpages);
char * parentpathname = strdup(pathname);
char lastchar = ::increment_string(parentpathname, -1);
if ((lastchar >= '0') && (lastchar <= '9'))
{
struct stat stat_buf;
if (0 == stat(parentpathname, &stat_buf))
{
parent_image = new sparse_image_t();
int ret = parent_image->open(parentpathname, flags);
if (ret != 0) return ret;
if ( (parent_image->pagesize != pagesize)
|| (parent_image->total_size != total_size))
{
panic("child drive image does not have same page count/page size configuration");
}
}
}
if (parentpathname != NULL) free(parentpathname);
if (dtoh32(header.version) == SPARSE_HEADER_VERSION) {
hd_size = dtoh64(header.disk);
BX_INFO(("sparse: pagesize = 0x%x, data_start = 0x" FMT_LL "x", pagesize, data_start));
}
2007-10-25 03:17:42 +04:00
return 0; // success
}
2006-06-16 12:56:13 +04:00
void sparse_image_t::close()
{
BX_DEBUG(("concat_image_t.close"));
if (pathname != NULL)
{
free(pathname);
}
#ifdef _POSIX_MAPPED_FILES
if (mmap_header != NULL)
{
int ret = munmap(mmap_header, mmap_length);
if (ret != 0)
BX_INFO(("failed to un-memory map sparse disk file"));
}
pagetable = NULL; // We didn't malloc it
#endif
if (fd > -1) {
::close(fd);
}
if (pagetable != NULL)
{
delete [] pagetable;
}
if (parent_image != NULL)
{
delete parent_image;
}
}
Bit64s sparse_image_t::lseek(Bit64s offset, int whence)
{
//showpagetable(pagetable, header.numpages);
if ((offset % 512) != 0)
BX_PANIC(("lseek HD with offset not multiple of 512"));
if (whence != SEEK_SET)
BX_PANIC(("lseek HD with whence not SEEK_SET"));
BX_DEBUG(("sparse_image_t::lseek(%d)", whence));
if (offset > total_size)
{
BX_PANIC(("sparse_image_t.lseek to byte %ld failed", (long)offset));
return -1;
}
//printf("Seeking to position %ld\n", (long) offset);
set_virtual_page((Bit32u)(offset >> pagesize_shift));
position_page_offset = (Bit32u)(offset & pagesize_mask);
return 0;
}
inline Bit64s sparse_image_t::get_physical_offset()
{
Bit64s physical_offset = data_start;
physical_offset += ((Bit64s)position_physical_page << pagesize_shift);
physical_offset += position_page_offset;
return physical_offset;
}
void sparse_image_t::set_virtual_page(Bit32u new_virtual_page)
{
position_virtual_page = new_virtual_page;
position_physical_page = dtoh32(pagetable[position_virtual_page]);
}
ssize_t sparse_image_t::read_page_fragment(Bit32u read_virtual_page, Bit32u read_page_offset, size_t read_size, void * buf)
{
if (read_virtual_page != position_virtual_page)
{
set_virtual_page(read_virtual_page);
}
position_page_offset = read_page_offset;
if (position_physical_page == SPARSE_PAGE_NOT_ALLOCATED)
{
if (parent_image != NULL)
{
return parent_image->read_page_fragment(read_virtual_page, read_page_offset, read_size, buf);
}
else
{
memset(buf, 0, read_size);
}
}
else
{
Bit64s physical_offset = get_physical_offset();
if (physical_offset != underlying_current_filepos)
{
off_t ret = ::lseek(fd, (off_t)physical_offset, SEEK_SET);
// underlying_current_filepos update deferred
if (ret == -1)
panic(strerror(errno));
}
//printf("Reading %s at position %ld size %d\n", pathname, (long) physical_offset, (long) read_size);
ssize_t readret = ::read(fd, buf, read_size);
if (readret == -1)
{
panic(strerror(errno));
}
if ((size_t)readret != read_size)
{
panic("could not read block contents from file");
}
underlying_current_filepos = physical_offset + read_size;
}
return read_size;
}
ssize_t sparse_image_t::read(void* buf, size_t count)
{
//showpagetable(pagetable, header.numpages);
ssize_t total_read = 0;
BX_DEBUG(("sparse_image_t.read %ld bytes", (long)count));
while (count != 0)
{
size_t can_read = pagesize - position_page_offset;
if (count < can_read) can_read = count;
BX_ASSERT (can_read != 0);
2014-01-25 21:07:10 +04:00
size_t was_read = (size_t)read_page_fragment(position_virtual_page, position_page_offset, can_read, buf);
if (was_read != can_read) {
BX_PANIC(("could not read from sparse disk"));
}
total_read += can_read;
position_page_offset += can_read;
if (position_page_offset == pagesize)
{
position_page_offset = 0;
set_virtual_page(position_virtual_page + 1);
}
BX_ASSERT(position_page_offset < pagesize);
buf = (((Bit8u *) buf) + can_read);
count -= can_read;
}
return total_read;
}
void sparse_image_t::panic(const char * message)
{
char buffer[1024];
if (message == NULL)
{
snprintf(buffer, sizeof(buffer), "error with sparse disk image %s", pathname);
}
else
{
snprintf(buffer, sizeof(buffer), "error with sparse disk image %s - %s", pathname, message);
}
2010-03-02 10:07:57 +03:00
BX_PANIC(("%s", buffer));
}
ssize_t sparse_image_t::write(const void* buf, size_t count)
{
//showpagetable(pagetable, header.numpages);
ssize_t total_written = 0;
Bit32u update_pagetable_start = position_virtual_page;
Bit32u update_pagetable_count = 0;
BX_DEBUG(("sparse_image_t.write %ld bytes", (long)count));
while (count != 0)
{
size_t can_write = pagesize - position_page_offset;
if (count < can_write) can_write = count;
BX_ASSERT (can_write != 0);
if (position_physical_page == SPARSE_PAGE_NOT_ALLOCATED)
{
// We just add on another page at the end of the file
// Reclamation, compaction etc should currently be done off-line
Bit64s data_size = underlying_filesize - data_start;
BX_ASSERT((data_size % pagesize) == 0);
Bit32u data_size_pages = (Bit32u)(data_size / pagesize);
Bit32u next_data_page = data_size_pages;
pagetable[position_virtual_page] = htod32(next_data_page);
position_physical_page = next_data_page;
Bit64s page_file_start = data_start + ((Bit64s)position_physical_page << pagesize_shift);
if (parent_image != NULL)
{
// If we have a parent, we must merge our portion with the parent
void *writebuffer = NULL;
if (can_write == pagesize)
{
writebuffer = (void *) buf;
}
else
{
writebuffer = malloc(pagesize);
if (writebuffer == NULL)
panic("Cannot allocate sufficient memory for page-merge in write");
// Read entire page - could optimize, but simple for now
parent_image->read_page_fragment(position_virtual_page, 0, pagesize, writebuffer);
void *dest_start = ((Bit8u *) writebuffer) + position_page_offset;
memcpy(dest_start, buf, can_write);
}
int ret = (int)::lseek(fd, page_file_start, SEEK_SET);
// underlying_current_filepos update deferred
if (ret == -1) panic(strerror(errno));
ret = ::write(fd, writebuffer, pagesize);
if (ret == -1) panic(strerror(errno));
if (pagesize != (Bit32u)ret) panic("failed to write entire merged page to disk");
if (can_write != pagesize)
{
free(writebuffer);
}
}
else
{
// We need to write a zero page because read has been returning zeroes
// We seek as close to the page end as possible, and then write a little
// This produces a sparse file which has blanks
// Also very quick, even when pagesize is massive
int ret = (int)::lseek(fd, page_file_start + pagesize - 4, SEEK_SET);
// underlying_current_filepos update deferred
if (ret == -1) panic(strerror(errno));
Bit32u zero = 0;
ret = ::write(fd, &zero, 4);
if (ret == -1) panic(strerror(errno));
if (ret != 4) panic("failed to write entire blank page to disk");
}
update_pagetable_count = (position_virtual_page - update_pagetable_start) + 1;
underlying_filesize = underlying_current_filepos = page_file_start + pagesize;
}
BX_ASSERT(position_physical_page != SPARSE_PAGE_NOT_ALLOCATED);
Bit64s physical_offset = get_physical_offset();
if (physical_offset != underlying_current_filepos)
{
off_t ret = ::lseek(fd, (off_t)physical_offset, SEEK_SET);
// underlying_current_filepos update deferred
if (ret == -1)
panic(strerror(errno));
}
//printf("Writing at position %ld size %d\n", (long) physical_offset, can_write);
ssize_t writeret = ::write(fd, buf, can_write);
if (writeret == -1)
{
panic(strerror(errno));
}
if ((size_t)writeret != can_write)
{
panic("could not write block contents to file");
}
underlying_current_filepos = physical_offset + can_write;
total_written += can_write;
position_page_offset += can_write;
if (position_page_offset == pagesize)
{
position_page_offset = 0;
set_virtual_page(position_virtual_page + 1);
}
BX_ASSERT(position_page_offset < pagesize);
buf = (((Bit8u *) buf) + can_write);
count -= can_write;
}
if (update_pagetable_count != 0)
{
bx_bool done = 0;
off_t pagetable_write_from = sizeof(header) + (sizeof(Bit32u) * update_pagetable_start);
size_t write_bytecount = update_pagetable_count * sizeof(Bit32u);
#ifdef _POSIX_MAPPED_FILES
if (mmap_header != NULL)
{
// Sync from the beginning of the page
size_t system_page_offset = pagetable_write_from & system_pagesize_mask;
void *start = ((Bit8u *) mmap_header + pagetable_write_from - system_page_offset);
int ret = msync(start, system_page_offset + write_bytecount, MS_ASYNC);
if (ret != 0)
panic(strerror(errno));
done = 1;
}
#endif
if (!done)
{
int ret = (int)::lseek(fd, pagetable_write_from, SEEK_SET);
// underlying_current_filepos update deferred
if (ret == -1) panic(strerror(errno));
//printf("Writing header at position %ld size %ld\n", (long) pagetable_write_from, (long) write_bytecount);
ret = ::write(fd, &pagetable[update_pagetable_start], write_bytecount);
if (ret == -1) panic(strerror(errno));
if ((size_t)ret != write_bytecount) panic("could not write entire updated block header");
underlying_current_filepos = pagetable_write_from + write_bytecount;
}
}
return total_written;
}
int sparse_image_t::check_format(int fd, Bit64u imgsize)
{
sparse_header_t temp_header;
int ret = ::read(fd, &temp_header, sizeof(temp_header));
if (ret < 0) {
return HDIMAGE_READ_ERROR;
}
if (ret != sizeof(temp_header)) {
return HDIMAGE_READ_ERROR;
}
if (dtoh32(temp_header.magic) != SPARSE_HEADER_MAGIC) {
return HDIMAGE_NO_SIGNATURE;
}
if ((dtoh32(temp_header.version) != SPARSE_HEADER_VERSION) &&
(dtoh32(temp_header.version) != SPARSE_HEADER_V1)) {
return HDIMAGE_VERSION_ERROR;
}
return HDIMAGE_FORMAT_OK;
}
#ifndef BXIMAGE
bx_bool sparse_image_t::save_state(const char *backup_fname)
{
return hdimage_backup_file(fd, backup_fname);
}
void sparse_image_t::restore_state(const char *backup_fname)
{
int backup_fd;
Bit64u imgsize = 0;
char *temp_pathname;
if ((backup_fd = hdimage_open_file(backup_fname, O_RDONLY, &imgsize, NULL)) < 0) {
BX_PANIC(("Could not open sparse image backup"));
return;
}
if (check_format(backup_fd, imgsize) != HDIMAGE_FORMAT_OK) {
::close(backup_fd);
BX_PANIC(("Could not detect sparse image header"));
return;
}
::close(backup_fd);
temp_pathname = strdup(pathname);
close();
if (!hdimage_copy_file(backup_fname, temp_pathname)) {
BX_PANIC(("Failed to restore sparse image '%s'", temp_pathname));
free(temp_pathname);
return;
}
if (device_image_t::open(temp_pathname) < 0) {
BX_PANIC(("Failed to open restored image '%s'", temp_pathname));
}
free(temp_pathname);
}
#endif
#ifdef WIN32
/*** dll_image_t function definitions ***/
typedef int (CDECL *vdisk_open_t) (const char *path, int flags);
typedef BOOL (CDECL *vdisk_read_t) (int vunit, LONGLONG blk, void *buf);
typedef BOOL (CDECL *vdisk_write_t) (int vunit, LONGLONG blk, const void *buf);
typedef void (CDECL *vdisk_close_t) (int vunit);
typedef LONGLONG (CDECL *vdisk_get_size_t) (int vunit);
HINSTANCE hlib_vdisk = NULL;
vdisk_open_t vdisk_open = NULL;
vdisk_read_t vdisk_read = NULL;
vdisk_write_t vdisk_write = NULL;
vdisk_close_t vdisk_close = NULL;
vdisk_get_size_t vdisk_get_size = NULL;
dll_image_t::dll_image_t()
{
if (hlib_vdisk == NULL) {
hlib_vdisk = LoadLibrary("vdisk.dll");
if (hlib_vdisk != NULL) {
vdisk_open = (vdisk_open_t) GetProcAddress(hlib_vdisk,"vdisk_open");
vdisk_read = (vdisk_read_t) GetProcAddress(hlib_vdisk,"vdisk_read");
vdisk_write = (vdisk_write_t) GetProcAddress(hlib_vdisk,"vdisk_write");
vdisk_close = (vdisk_close_t) GetProcAddress(hlib_vdisk,"vdisk_close");
vdisk_get_size = (vdisk_get_size_t) GetProcAddress(hlib_vdisk,"vdisk_get_size");
if ((vdisk_open == NULL) || (vdisk_read == NULL) || (vdisk_write == NULL) ||
(vdisk_close == NULL) || (vdisk_get_size == NULL)) {
FreeLibrary(hlib_vdisk);
hlib_vdisk = NULL;
}
}
}
}
int dll_image_t::open(const char* pathname, int flags)
{
if (hlib_vdisk != NULL) {
vunit = vdisk_open(pathname, flags);
if (vunit >= 0) {
hd_size = (Bit64u)vdisk_get_size(vunit) << 9;
vblk = 0;
}
} else {
vunit = -2;
}
return vunit;
}
void dll_image_t::close()
{
if ((vunit >= 0) && (hlib_vdisk != NULL)) {
vdisk_close(vunit);
}
}
Bit64s dll_image_t::lseek(Bit64s offset, int whence)
{
if (whence == SEEK_SET) {
vblk = offset >> 9;
} else if (whence == SEEK_CUR) {
vblk += offset >> 9;
} else {
BX_ERROR(("lseek: mode not supported yet"));
return -1;
}
if (vblk >= (Bit64s)(hd_size >> 9))
return -1;
return 0;
}
ssize_t dll_image_t::read(void* buf, size_t count)
{
if ((vunit >= 0) && (hlib_vdisk != NULL)) {
if (vdisk_read(vunit, vblk, buf)) {
vblk++;
return count;
}
}
return -1;
}
ssize_t dll_image_t::write(const void* buf, size_t count)
{
if ((vunit >= 0) && (hlib_vdisk != 0)) {
if (vdisk_write(vunit, vblk, buf)) {
vblk++;
return count;
}
}
return -1;
}
#endif // DLL_HD_SUPPORT
// redolog implementation
redolog_t::redolog_t()
{
fd = -1;
catalog = NULL;
bitmap = NULL;
extent_index = (Bit32u)0;
extent_offset = (Bit32u)0;
extent_next = (Bit32u)0;
}
void redolog_t::print_header()
{
BX_INFO(("redolog : Standard Header : magic='%s', type='%s', subtype='%s', version = %d.%d",
header.standard.magic, header.standard.type, header.standard.subtype,
dtoh32(header.standard.version)/0x10000,
dtoh32(header.standard.version)%0x10000));
if (dtoh32(header.standard.version) == STANDARD_HEADER_VERSION) {
BX_INFO(("redolog : Specific Header : #entries=%d, bitmap size=%d, exent size = %d disk size = " FMT_LL "d",
dtoh32(header.specific.catalog),
dtoh32(header.specific.bitmap),
dtoh32(header.specific.extent),
dtoh64(header.specific.disk)));
} else if (dtoh32(header.standard.version) == STANDARD_HEADER_V1) {
redolog_header_v1_t header_v1;
memcpy(&header_v1, &header, STANDARD_HEADER_SIZE);
BX_INFO(("redolog : Specific Header : #entries=%d, bitmap size=%d, exent size = %d disk size = " FMT_LL "d",
dtoh32(header_v1.specific.catalog),
dtoh32(header_v1.specific.bitmap),
dtoh32(header_v1.specific.extent),
dtoh64(header_v1.specific.disk)));
}
}
int redolog_t::make_header(const char* type, Bit64u size)
{
Bit32u entries, extent_size, bitmap_size;
Bit64u maxsize;
Bit32u flip=0;
// Set standard header values
memset(&header, 0, sizeof(redolog_header_t));
strcpy((char*)header.standard.magic, STANDARD_HEADER_MAGIC);
strcpy((char*)header.standard.type, REDOLOG_TYPE);
strcpy((char*)header.standard.subtype, type);
header.standard.version = htod32(STANDARD_HEADER_VERSION);
header.standard.header = htod32(STANDARD_HEADER_SIZE);
entries = 512;
bitmap_size = 1;
// Compute #entries and extent size values
do {
extent_size = 8 * bitmap_size * 512;
header.specific.catalog = htod32(entries);
header.specific.bitmap = htod32(bitmap_size);
header.specific.extent = htod32(extent_size);
maxsize = (Bit64u)entries * (Bit64u)extent_size;
flip++;
if(flip&0x01) bitmap_size *= 2;
else entries *= 2;
} while (maxsize < size);
header.specific.timestamp = 0;
header.specific.disk = htod64(size);
print_header();
catalog = (Bit32u*)malloc(dtoh32(header.specific.catalog) * sizeof(Bit32u));
bitmap = (Bit8u*)malloc(dtoh32(header.specific.bitmap));
if ((catalog == NULL) || (bitmap==NULL))
BX_PANIC(("redolog : could not malloc catalog or bitmap"));
for (Bit32u i=0; i<dtoh32(header.specific.catalog); i++)
catalog[i] = htod32(REDOLOG_PAGE_NOT_ALLOCATED);
bitmap_blocks = 1 + (dtoh32(header.specific.bitmap) - 1) / 512;
extent_blocks = 1 + (dtoh32(header.specific.extent) - 1) / 512;
BX_DEBUG(("redolog : each bitmap is %d blocks", bitmap_blocks));
BX_DEBUG(("redolog : each extent is %d blocks", extent_blocks));
return 0;
}
int redolog_t::create(const char* filename, const char* type, Bit64u size)
{
BX_INFO(("redolog : creating redolog %s", filename));
int filedes = ::open(filename, O_RDWR | O_CREAT | O_TRUNC
#ifdef O_BINARY
| O_BINARY
#endif
, S_IWUSR | S_IRUSR | S_IRGRP | S_IWGRP);
return create(filedes, type, size);
}
int redolog_t::create(int filedes, const char* type, Bit64u size)
{
fd = filedes;
if (fd < 0)
{
return -1; // open failed
}
if (make_header(type, size) < 0)
{
return -1;
}
// Write header
::write(fd, &header, dtoh32(header.standard.header));
// Write catalog
// FIXME could mmap
::write(fd, catalog, dtoh32(header.specific.catalog) * sizeof (Bit32u));
return 0;
}
int redolog_t::open(const char* filename, const char *type)
{
return open(filename, type, O_RDWR);
}
int redolog_t::open(const char* filename, const char *type, int flags)
{
Bit64u imgsize = 0;
#ifndef WIN32
time_t mtime;
#else
FILETIME mtime;
#endif
fd = hdimage_open_file(filename, flags, &imgsize, &mtime);
if (fd < 0) {
BX_INFO(("redolog : could not open image %s", filename));
// open failed.
return -1;
}
BX_INFO(("redolog : open image %s", filename));
int res = check_format(fd, type);
if (res != HDIMAGE_FORMAT_OK) {
switch (res) {
case HDIMAGE_READ_ERROR:
BX_PANIC(("redolog : could not read header"));
break;
case HDIMAGE_NO_SIGNATURE:
BX_PANIC(("redolog : Bad header magic"));
break;
case HDIMAGE_TYPE_ERROR:
BX_PANIC(("redolog : Bad header type or subtype"));
break;
case HDIMAGE_VERSION_ERROR:
BX_PANIC(("redolog : Bad header version"));
break;
}
return -1;
}
if (bx_read_image(fd, 0, &header, sizeof(header)) < 0) {
return -1;
}
print_header();
if (dtoh32(header.standard.version) == STANDARD_HEADER_V1) {
redolog_header_v1_t header_v1;
memcpy(&header_v1, &header, STANDARD_HEADER_SIZE);
header.specific.disk = header_v1.specific.disk;
}
if (!strcmp(type, REDOLOG_SUBTYPE_GROWING)) {
set_timestamp(fat_datetime(mtime, 1) | (fat_datetime(mtime, 0) << 16));
}
catalog = (Bit32u*)malloc(dtoh32(header.specific.catalog) * sizeof(Bit32u));
// FIXME could mmap
res = bx_read_image(fd, dtoh32(header.standard.header), catalog, dtoh32(header.specific.catalog) * sizeof(Bit32u));
if (res != (ssize_t)(dtoh32(header.specific.catalog) * sizeof(Bit32u)))
{
BX_PANIC(("redolog : could not read catalog %d=%d",res, dtoh32(header.specific.catalog)));
return -1;
}
// check last used extent
extent_next = 0;
for (Bit32u i=0; i < dtoh32(header.specific.catalog); i++)
{
if (dtoh32(catalog[i]) != REDOLOG_PAGE_NOT_ALLOCATED)
{
if (dtoh32(catalog[i]) >= extent_next)
extent_next = dtoh32(catalog[i]) + 1;
}
}
BX_INFO(("redolog : next extent will be at index %d",extent_next));
// memory used for storing bitmaps
bitmap = (Bit8u *)malloc(dtoh32(header.specific.bitmap));
bitmap_blocks = 1 + (dtoh32(header.specific.bitmap) - 1) / 512;
extent_blocks = 1 + (dtoh32(header.specific.extent) - 1) / 512;
BX_DEBUG(("redolog : each bitmap is %d blocks", bitmap_blocks));
BX_DEBUG(("redolog : each extent is %d blocks", extent_blocks));
imagepos = 0;
bitmap_update = 1;
return 0;
}
void redolog_t::close()
{
if (fd >= 0)
::close(fd);
if (catalog != NULL)
free(catalog);
if (bitmap != NULL)
free(bitmap);
}
Bit64u redolog_t::get_size()
{
return dtoh64(header.specific.disk);
}
Bit32u redolog_t::get_timestamp()
{
return dtoh32(header.specific.timestamp);
}
bx_bool redolog_t::set_timestamp(Bit32u timestamp)
{
header.specific.timestamp = htod32(timestamp);
// Update header
bx_write_image(fd, 0, &header, dtoh32(header.standard.header));
return 1;
}
Bit64s redolog_t::lseek(Bit64s offset, int whence)
{
if ((offset % 512) != 0) {
BX_PANIC(("redolog : lseek() offset not multiple of 512"));
return -1;
}
if (whence == SEEK_SET) {
imagepos = offset;
} else if (whence == SEEK_CUR) {
imagepos += offset;
} else {
BX_PANIC(("redolog: lseek() mode not supported yet"));
return -1;
}
if (imagepos > (Bit64s)dtoh64(header.specific.disk)) {
BX_PANIC(("redolog : lseek() to byte %ld failed", (long)offset));
return -1;
}
Bit32u old_extent_index = extent_index;
extent_index = (Bit32u)(imagepos / dtoh32(header.specific.extent));
if (extent_index != old_extent_index) {
bitmap_update = 1;
}
extent_offset = (Bit32u)((imagepos % dtoh32(header.specific.extent)) / 512);
BX_DEBUG(("redolog : lseeking extent index %d, offset %d",extent_index, extent_offset));
return imagepos;
}
ssize_t redolog_t::read(void* buf, size_t count)
{
Bit64s block_offset, bitmap_offset;
ssize_t ret;
if (count != 512) {
BX_PANIC(("redolog : read() with count not 512"));
return -1;
}
BX_DEBUG(("redolog : reading index %d, mapping to %d", extent_index, dtoh32(catalog[extent_index])));
if (dtoh32(catalog[extent_index]) == REDOLOG_PAGE_NOT_ALLOCATED) {
// page not allocated
return 0;
}
bitmap_offset = (Bit64s)STANDARD_HEADER_SIZE + (dtoh32(header.specific.catalog) * sizeof(Bit32u));
bitmap_offset += (Bit64s)512 * dtoh32(catalog[extent_index]) * (extent_blocks + bitmap_blocks);
block_offset = bitmap_offset + ((Bit64s)512 * (bitmap_blocks + extent_offset));
BX_DEBUG(("redolog : bitmap offset is %x", (Bit32u)bitmap_offset));
BX_DEBUG(("redolog : block offset is %x", (Bit32u)block_offset));
if (bitmap_update) {
if (bx_read_image(fd, (off_t)bitmap_offset, bitmap, dtoh32(header.specific.bitmap)) != (ssize_t)dtoh32(header.specific.bitmap)) {
BX_PANIC(("redolog : failed to read bitmap for extent %d", extent_index));
return -1;
}
bitmap_update = 0;
}
if (((bitmap[extent_offset/8] >> (extent_offset%8)) & 0x01) == 0x00) {
BX_DEBUG(("read not in redolog"));
// bitmap says block not in redolog
return 0;
}
ret = bx_read_image(fd, (off_t)block_offset, buf, count);
if (ret >= 0) lseek(512, SEEK_CUR);
return ret;
}
ssize_t redolog_t::write(const void* buf, size_t count)
{
Bit32u i;
Bit64s block_offset, bitmap_offset, catalog_offset;
ssize_t written;
bx_bool update_catalog = 0;
if (count != 512) {
BX_PANIC(("redolog : write() with count not 512"));
return -1;
}
BX_DEBUG(("redolog : writing index %d, mapping to %d", extent_index, dtoh32(catalog[extent_index])));
if (dtoh32(catalog[extent_index]) == REDOLOG_PAGE_NOT_ALLOCATED) {
if (extent_next >= dtoh32(header.specific.catalog)) {
BX_PANIC(("redolog : can't allocate new extent... catalog is full"));
return -1;
}
BX_DEBUG(("redolog : allocating new extent at %d", extent_next));
// Extent not allocated, allocate new
catalog[extent_index] = htod32(extent_next);
extent_next += 1;
char *zerobuffer = (char*)malloc(512);
memset(zerobuffer, 0, 512);
// Write bitmap
bitmap_offset = (Bit64s)STANDARD_HEADER_SIZE + (dtoh32(header.specific.catalog) * sizeof(Bit32u));
bitmap_offset += (Bit64s)512 * dtoh32(catalog[extent_index]) * (extent_blocks + bitmap_blocks);
::lseek(fd, (off_t)bitmap_offset, SEEK_SET);
for (i=0; i<bitmap_blocks; i++) {
::write(fd, zerobuffer, 512);
}
// Write extent
for (i=0; i<extent_blocks; i++) {
::write(fd, zerobuffer, 512);
}
free(zerobuffer);
update_catalog = 1;
}
bitmap_offset = (Bit64s)STANDARD_HEADER_SIZE + (dtoh32(header.specific.catalog) * sizeof(Bit32u));
bitmap_offset += (Bit64s)512 * dtoh32(catalog[extent_index]) * (extent_blocks + bitmap_blocks);
block_offset = bitmap_offset + ((Bit64s)512 * (bitmap_blocks + extent_offset));
BX_DEBUG(("redolog : bitmap offset is %x", (Bit32u)bitmap_offset));
BX_DEBUG(("redolog : block offset is %x", (Bit32u)block_offset));
// Write block
written = bx_write_image(fd, (off_t)block_offset, (void*)buf, count);
// Write bitmap
if (bitmap_update) {
if (bx_read_image(fd, (off_t)bitmap_offset, bitmap, dtoh32(header.specific.bitmap)) != (ssize_t)dtoh32(header.specific.bitmap)) {
BX_PANIC(("redolog : failed to read bitmap for extent %d", extent_index));
return 0;
}
bitmap_update = 0;
}
// If bloc does not belong to extent yet
if (((bitmap[extent_offset/8] >> (extent_offset%8)) & 0x01) == 0x00) {
bitmap[extent_offset/8] |= 1 << (extent_offset%8);
bx_write_image(fd, (off_t)bitmap_offset, bitmap, dtoh32(header.specific.bitmap));
}
// Write catalog
if (update_catalog) {
// FIXME if mmap
catalog_offset = (Bit64s)STANDARD_HEADER_SIZE + (extent_index * sizeof(Bit32u));
BX_DEBUG(("redolog : writing catalog at offset %x", (Bit32u)catalog_offset));
bx_write_image(fd, (off_t)catalog_offset, &catalog[extent_index], sizeof(Bit32u));
}
if (written >= 0) lseek(512, SEEK_CUR);
return written;
}
int redolog_t::check_format(int fd, const char *subtype)
{
redolog_header_t temp_header;
int res = bx_read_image(fd, 0, &temp_header, sizeof(redolog_header_t));
if (res != STANDARD_HEADER_SIZE) {
return HDIMAGE_READ_ERROR;
}
if (strcmp((char*)temp_header.standard.magic, STANDARD_HEADER_MAGIC) != 0) {
return HDIMAGE_NO_SIGNATURE;
}
if (strcmp((char*)temp_header.standard.type, REDOLOG_TYPE) != 0) {
return HDIMAGE_TYPE_ERROR;
}
if (strcmp((char*)temp_header.standard.subtype, subtype) != 0) {
return HDIMAGE_TYPE_ERROR;
}
if ((dtoh32(temp_header.standard.version) != STANDARD_HEADER_VERSION) &&
(dtoh32(temp_header.standard.version) != STANDARD_HEADER_V1)) {
return HDIMAGE_VERSION_ERROR;
}
return HDIMAGE_FORMAT_OK;
}
#ifdef BXIMAGE
int redolog_t::commit(device_image_t *base_image)
{
int ret = 0;
Bit32u i;
Bit8u buffer[512];
printf("\nCommitting changes to base image file: [ 0%%]");
for (i = 0; i < dtoh32(header.specific.catalog); i++) {
printf("\x8\x8\x8\x8\x8%3d%%]", (i+1)*100/dtoh32(header.specific.catalog));
fflush(stdout);
if (dtoh32(catalog[i]) != REDOLOG_PAGE_NOT_ALLOCATED) {
Bit64s bitmap_offset;
Bit32u bitmap_size, j;
bitmap_offset = (Bit64s)STANDARD_HEADER_SIZE + (dtoh32(header.specific.catalog) * sizeof(Bit32u));
bitmap_offset += (Bit64s)512 * dtoh32(catalog[i]) * (extent_blocks + bitmap_blocks);
// Read bitmap
bitmap_size = dtoh32(header.specific.bitmap);
if ((Bit32u)bx_read_image(fd, (off_t)bitmap_offset, bitmap, bitmap_size) != bitmap_size) {
ret = -1;
break;
}
for (j = 0; j < dtoh32(header.specific.bitmap); j++) {
Bit32u bit;
for (bit = 0; bit < 8; bit++) {
if ( (bitmap[j] & (1 << bit)) != 0) {
Bit64s base_offset, block_offset;
block_offset = bitmap_offset + ((Bit64s)512 * (bitmap_blocks + ((j * 8) + bit)));
if (bx_read_image(fd, (off_t)block_offset, buffer, 512) != 512) {
ret = -1;
break;
}
base_offset = (Bit64s)i * (dtoh32(header.specific.extent));
base_offset += (Bit64s)512 * ((j * 8) + bit);
if (base_image->lseek(base_offset, SEEK_SET) < 0) {
ret = -1;
break;
}
if (base_image->write(buffer, 512) < 0) {
ret = -1;
break;
}
}
}
}
}
}
return ret;
}
#endif
#ifndef BXIMAGE
bx_bool redolog_t::save_state(const char *backup_fname)
{
return hdimage_backup_file(fd, backup_fname);
}
#endif
/*** growing_image_t function definitions ***/
growing_image_t::growing_image_t()
{
redolog = new redolog_t();
}
growing_image_t::~growing_image_t()
{
delete redolog;
}
int growing_image_t::open(const char* _pathname, int flags)
{
pathname = _pathname;
int filedes = redolog->open(pathname, REDOLOG_SUBTYPE_GROWING, flags);
hd_size = redolog->get_size();
BX_INFO(("'growing' disk opened, growing file is '%s'", pathname));
return filedes;
}
void growing_image_t::close()
{
redolog->close();
}
Bit64s growing_image_t::lseek(Bit64s offset, int whence)
{
return redolog->lseek(offset, whence);
}
ssize_t growing_image_t::read(void* buf, size_t count)
{
size_t n = 0;
ssize_t ret = 0;
memset(buf, 0, count);
while (n < count) {
ret = redolog->read((char*) buf, 512);
if (ret < 0) break;
n += 512;
}
return (ret < 0) ? ret : count;
}
ssize_t growing_image_t::write(const void* buf, size_t count)
{
size_t n = 0;
ssize_t ret = 0;
while (n < count) {
ret = redolog->write((char*) buf, 512);
if (ret < 0) break;
n += 512;
}
return (ret < 0) ? ret : count;
}
Bit32u growing_image_t::get_timestamp()
{
return redolog->get_timestamp();
}
int growing_image_t::check_format(int fd, Bit64u imgsize)
{
return redolog_t::check_format(fd, REDOLOG_SUBTYPE_GROWING);
}
#ifndef BXIMAGE
bx_bool growing_image_t::save_state(const char *backup_fname)
{
return redolog->save_state(backup_fname);
}
void growing_image_t::restore_state(const char *backup_fname)
{
redolog_t *temp_redolog = new redolog_t();
if (temp_redolog->open(backup_fname, REDOLOG_SUBTYPE_GROWING, O_RDONLY) < 0) {
delete temp_redolog;
BX_PANIC(("Can't open growing image backup '%s'", backup_fname));
return;
} else {
bx_bool okay = (temp_redolog->get_size() == redolog->get_size());
temp_redolog->close();
delete temp_redolog;
if (!okay) {
BX_PANIC(("size reported by backup doesn't match growing disk size"));
return;
}
}
redolog->close();
if (!hdimage_copy_file(backup_fname, pathname)) {
BX_PANIC(("Failed to restore growing image '%s'", pathname));
return;
}
if (device_image_t::open(pathname) < 0) {
BX_PANIC(("Failed to open restored growing image '%s'", pathname));
}
}
#endif
// compare hd_size and modification time of r/o disk and journal
bx_bool coherency_check(device_image_t *ro_disk, redolog_t *redolog)
{
Bit32u timestamp1, timestamp2;
char buffer[24];
if (ro_disk->hd_size != redolog->get_size()) {
BX_PANIC(("size reported by redolog doesn't match r/o disk size"));
return 0;
}
timestamp1 = ro_disk->get_timestamp();
timestamp2 = redolog->get_timestamp();
if (timestamp2 != 0) {
if (timestamp1 != timestamp2) {
sprintf(buffer, "%02d.%02d.%04d %02d:%02d:%02d", (timestamp2 >> 16) & 0x001f,
(timestamp2 >> 21) & 0x000f, ((timestamp2 >> 25) & 0x007f) + 1980,
(timestamp2 & 0xf800) >> 11, (timestamp2 & 0x07e0) >> 5,
(timestamp2 & 0x001f) << 1);
BX_PANIC(("unexpected modification time of the r/o disk (should be %s)", buffer));
return 0;
}
} else if (timestamp1 != 0) {
redolog->set_timestamp(timestamp1);
}
return 1;
}
/*** undoable_image_t function definitions ***/
undoable_image_t::undoable_image_t(const char* _redolog_name)
{
redolog = new redolog_t();
redolog_name = NULL;
if (_redolog_name != NULL) {
if ((strlen(_redolog_name) > 0) && (strcmp(_redolog_name,"none") != 0)) {
redolog_name = strdup(_redolog_name);
}
}
}
undoable_image_t::~undoable_image_t()
{
delete redolog;
delete ro_disk;
}
int undoable_image_t::open(const char* pathname, int flags)
{
UNUSED(flags);
if (access(pathname, F_OK) < 0) {
BX_PANIC(("r/o disk image doesn't exist"));
}
int mode = hdimage_detect_image_mode(pathname);
if (mode == BX_HDIMAGE_MODE_UNKNOWN) {
BX_PANIC(("r/o disk image mode not detected"));
return -1;
} else {
BX_INFO(("base image mode = '%s'", hdimage_mode_names[mode]));
}
ro_disk = DEV_hdimage_init_image(mode, 0, NULL);
if (ro_disk == NULL) {
return -1;
}
if (ro_disk->open(pathname, O_RDONLY) < 0)
return -1;
hd_size = ro_disk->hd_size;
// If not set, we make up the redolog filename from the pathname
if (redolog_name == NULL) {
redolog_name = (char*)malloc(strlen(pathname) + UNDOABLE_REDOLOG_EXTENSION_LENGTH + 1);
sprintf(redolog_name, "%s%s", pathname, UNDOABLE_REDOLOG_EXTENSION);
}
if (redolog->open(redolog_name, REDOLOG_SUBTYPE_UNDOABLE) < 0) {
if (redolog->create(redolog_name, REDOLOG_SUBTYPE_UNDOABLE, hd_size) < 0) {
BX_PANIC(("Can't open or create redolog '%s'",redolog_name));
return -1;
}
}
if (!coherency_check(ro_disk, redolog)) {
return -1;
}
BX_INFO(("'undoable' disk opened: ro-file is '%s', redolog is '%s'", pathname, redolog_name));
return 0;
}
void undoable_image_t::close()
{
redolog->close();
ro_disk->close();
if (redolog_name != NULL)
free(redolog_name);
}
Bit64s undoable_image_t::lseek(Bit64s offset, int whence)
{
redolog->lseek(offset, whence);
return ro_disk->lseek(offset, whence);
}
ssize_t undoable_image_t::read(void* buf, size_t count)
{
size_t n = 0;
ssize_t ret = 0;
while (n < count) {
if ((size_t)redolog->read((char*) buf, 512) != 512) {
ret = ro_disk->read((char*) buf, 512);
if (ret < 0) break;
}
n += 512;
}
return (ret < 0) ? ret : count;
}
ssize_t undoable_image_t::write(const void* buf, size_t count)
{
size_t n = 0;
ssize_t ret = 0;
while (n < count) {
ret = redolog->write((char*) buf, 512);
if (ret < 0) break;
n += 512;
}
return (ret < 0) ? ret : count;
}
#ifndef BXIMAGE
bx_bool undoable_image_t::save_state(const char *backup_fname)
{
return redolog->save_state(backup_fname);
}
void undoable_image_t::restore_state(const char *backup_fname)
{
redolog_t *temp_redolog = new redolog_t();
if (temp_redolog->open(backup_fname, REDOLOG_SUBTYPE_UNDOABLE, O_RDONLY) < 0) {
delete temp_redolog;
BX_PANIC(("Can't open undoable redolog backup '%s'", backup_fname));
return;
} else {
bx_bool okay = coherency_check(ro_disk, temp_redolog);
temp_redolog->close();
delete temp_redolog;
if (!okay) return;
}
redolog->close();
if (!hdimage_copy_file(backup_fname, redolog_name)) {
BX_PANIC(("Failed to restore undoable redolog '%s'", redolog_name));
return;
} else {
if (redolog->open(redolog_name, REDOLOG_SUBTYPE_UNDOABLE) < 0) {
BX_PANIC(("Can't open restored undoable redolog '%s'", redolog_name));
}
}
}
#endif
/*** volatile_image_t function definitions ***/
volatile_image_t::volatile_image_t(const char* _redolog_name)
{
redolog = new redolog_t();
redolog_temp = NULL;
redolog_name = NULL;
if (_redolog_name != NULL) {
if ((strlen(_redolog_name) > 0) && (strcmp(_redolog_name,"none") != 0)) {
redolog_name = strdup(_redolog_name);
}
}
}
volatile_image_t::~volatile_image_t()
{
delete redolog;
delete ro_disk;
}
int volatile_image_t::open(const char* pathname, int flags)
{
int filedes;
Bit32u timestamp;
UNUSED(flags);
if (access(pathname, F_OK) < 0) {
BX_PANIC(("r/o disk image doesn't exist"));
}
int mode = hdimage_detect_image_mode(pathname);
if (mode == BX_HDIMAGE_MODE_UNKNOWN) {
BX_PANIC(("r/o disk image mode not detected"));
return -1;
} else {
BX_INFO(("base image mode = '%s'", hdimage_mode_names[mode]));
}
ro_disk = DEV_hdimage_init_image(mode, 0, NULL);
if (ro_disk == NULL) {
return -1;
}
if (ro_disk->open(pathname, O_RDONLY)<0)
return -1;
hd_size = ro_disk->hd_size;
// If not set, use pathname as template
if (redolog_name == NULL) {
redolog_name = strdup(pathname);
}
redolog_temp = (char*)malloc(strlen(redolog_name) + VOLATILE_REDOLOG_EXTENSION_LENGTH + 1);
sprintf(redolog_temp, "%s%s", redolog_name, VOLATILE_REDOLOG_EXTENSION);
filedes = mkstemp(redolog_temp);
if (filedes < 0) {
BX_PANIC(("Can't create volatile redolog '%s'", redolog_temp));
return -1;
}
if (redolog->create(filedes, REDOLOG_SUBTYPE_VOLATILE, hd_size) < 0) {
BX_PANIC(("Can't create volatile redolog '%s'", redolog_temp));
return -1;
}
#if (!defined(WIN32)) && !BX_WITH_MACOS
// on unix it is legal to delete an open file
unlink(redolog_temp);
#endif
// timestamp required for save/restore support
timestamp = ro_disk->get_timestamp();
redolog->set_timestamp(timestamp);
BX_INFO(("'volatile' disk opened: ro-file is '%s', redolog is '%s'", pathname, redolog_temp));
return 0;
}
void volatile_image_t::close()
{
redolog->close();
ro_disk->close();
#if defined(WIN32) || BX_WITH_MACOS
// on non-unix we have to wait till the file is closed to delete it
unlink(redolog_temp);
#endif
if (redolog_temp!=NULL)
free(redolog_temp);
if (redolog_name!=NULL)
free(redolog_name);
}
Bit64s volatile_image_t::lseek(Bit64s offset, int whence)
{
redolog->lseek(offset, whence);
return ro_disk->lseek(offset, whence);
}
ssize_t volatile_image_t::read(void* buf, size_t count)
{
size_t n = 0;
ssize_t ret = 0;
while (n < count) {
if ((size_t)redolog->read((char*) buf, 512) != 512) {
ret = ro_disk->read((char*) buf, 512);
if (ret < 0) break;
}
n += 512;
}
return (ret < 0) ? ret : count;
}
ssize_t volatile_image_t::write(const void* buf, size_t count)
{
size_t n = 0;
ssize_t ret = 0;
while (n < count) {
ret = redolog->write((char*) buf, 512);
if (ret < 0) break;
n += 512;
}
return (ret < 0) ? ret : count;
}
#ifndef BXIMAGE
bx_bool volatile_image_t::save_state(const char *backup_fname)
{
return redolog->save_state(backup_fname);
}
void volatile_image_t::restore_state(const char *backup_fname)
{
redolog_t *temp_redolog = new redolog_t();
if (temp_redolog->open(backup_fname, REDOLOG_SUBTYPE_VOLATILE, O_RDONLY) < 0) {
delete temp_redolog;
BX_PANIC(("Can't open volatile redolog backup '%s'", backup_fname));
return;
} else {
bx_bool okay = coherency_check(ro_disk, temp_redolog);
temp_redolog->close();
delete temp_redolog;
if (!okay) return;
}
redolog->close();
if (!hdimage_copy_file(backup_fname, redolog_temp)) {
BX_PANIC(("Failed to restore volatile redolog '%s'", redolog_temp));
return;
} else {
if (redolog->open(redolog_temp, REDOLOG_SUBTYPE_VOLATILE) < 0) {
BX_PANIC(("Can't open restored volatile redolog '%s'", redolog_temp));
return;
}
}
#if (!defined(WIN32)) && !BX_WITH_MACOS
// on unix it is legal to delete an open file
unlink(redolog_temp);
#endif
}
#endif