2001-04-10 06:20:02 +04:00
|
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
2001-04-10 05:04:59 +04:00
|
|
|
//
|
|
|
|
// MandrakeSoft S.A.
|
|
|
|
// 43, rue d'Aboukir
|
|
|
|
// 75002 Paris - France
|
|
|
|
// http://www.linux-mandrake.com/
|
|
|
|
// http://www.mandrakesoft.com/
|
|
|
|
//
|
|
|
|
// This library is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
|
|
// License as published by the Free Software Foundation; either
|
|
|
|
// version 2 of the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
// Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
|
|
// License along with this library; if not, write to the Free Software
|
|
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
// This file (SB16.H) written and donated by Josef Drexler
|
|
|
|
|
|
|
|
|
|
|
|
#if BX_USE_SB16_SMF
|
|
|
|
# define BX_SB16_SMF static
|
|
|
|
# define BX_SB16_THIS bx_sb16.
|
|
|
|
# define BX_SB16_THISP (&bx_sb16)
|
|
|
|
#else
|
|
|
|
# define BX_SB16_SMF
|
|
|
|
# define BX_SB16_THIS this->
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
# define BX_SB16_THISP (this)
|
2001-04-10 05:04:59 +04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if BX_USE_SOUND_VIRTUAL
|
|
|
|
# define BX_SOUND_VIRTUAL virtual
|
|
|
|
# define BX_SOUND_OUTPUT_C_DEF bx_sound_output_c
|
|
|
|
#else
|
|
|
|
# define BX_SOUND_VIRTUAL
|
|
|
|
# define BX_SOUND_OUTPUT_C_DEF BX_SOUND_OUTPUT_C
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// If the buffer commands are to be inlined:
|
2001-04-10 06:10:09 +04:00
|
|
|
#define BX_SB16_BUFINL BX_CPP_INLINE
|
|
|
|
// BX_CPP_INLINE is defined to the inline keyword for the C++ compiler.
|
2001-04-10 05:04:59 +04:00
|
|
|
|
|
|
|
// maximum number of patch translations
|
|
|
|
#define BX_SB16_PATCHTABLESIZE 1024
|
|
|
|
|
|
|
|
// the resources. Of these, IRQ and DMA's can be changed via a DSP command
|
|
|
|
#define BX_SB16_IO 0x220 // IO base address of DSP, mixer & FM part
|
|
|
|
#define BX_SB16_IOLEN 16 // number of addresses covered
|
|
|
|
#define BX_SB16_IOMPU 0x330 // IO base address of MPU402 part
|
|
|
|
#define BX_SB16_IOMPULEN 4 // number of addresses covered
|
|
|
|
#define BX_SB16_IOADLIB 0x388 // equivalent to 0x220..0x223 and 0x228..0x229
|
|
|
|
#define BX_SB16_IOADLIBLEN 4 // number of addresses covered
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
#define BX_SB16_IRQ bx_sb16.currentirq
|
2001-04-10 05:04:59 +04:00
|
|
|
#define BX_SB16_IRQMPU BX_SB16_IRQ // IRQ for the MPU401 part - same value
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
#define BX_SB16_DMAL bx_sb16.currentdma8
|
|
|
|
#define BX_SB16_DMAH bx_sb16.currentdma16
|
2001-04-10 05:04:59 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
A few notes:
|
|
|
|
IRQ, DMA8bit and DMA16bit are for the DSP part. These
|
|
|
|
are changeable at runtime in mixer registers 0x80 and 0x81.
|
|
|
|
The defaults after a mixer initialization are IRQ 5, DMA8 1, no DMA16
|
|
|
|
|
|
|
|
Any of the address lengths can be zero to disable that particular
|
|
|
|
subdevice. Turning off the DSP still leaves FM music enabled on the
|
|
|
|
BX_SB16_IOADLIB ports, unless those are disabled as well.
|
|
|
|
|
|
|
|
BX_SB16_IOMPULEN should be 4 or 2. In the latter case, the emulator
|
|
|
|
is completely invisible, and runtime changes are not possible
|
|
|
|
|
|
|
|
BX_SB16_IOADLIBLEN should be 2 or 4. If 0, Ports 0x388.. don't
|
|
|
|
get used, but the OPL2 can still be accessed at 0x228..0x229.
|
|
|
|
If 2, the usual Adlib emulation is enabled. If 4, an OPL3 is
|
|
|
|
emulated at adresses 0x388..0x38b, or two separate OPL2's.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Definitions for the output functions */
|
|
|
|
#define BX_SOUND_OUTPUT_OK 0
|
|
|
|
#define BX_SOUND_OUTPUT_ERR 1
|
|
|
|
#define BX_SOUND_OUTPUT_WAVEPACKETSIZE 4096
|
|
|
|
// the is the size of a DMA chunk sent to output
|
|
|
|
// it should not be too large to avoid lag, and not too
|
|
|
|
// small to avoid unnecessary overhead.
|
|
|
|
|
|
|
|
#define BX_SB16_MIX_REG 0x90 // total number of mixer registers
|
|
|
|
|
|
|
|
// The array containing an instrument/bank remapping
|
|
|
|
struct bx_sb16_ins_map {
|
|
|
|
Bit8u oldbankmsb, oldbanklsb, oldprogch;
|
|
|
|
Bit8u newbankmsb, newbanklsb, newprogch;
|
|
|
|
};
|
|
|
|
|
|
|
|
// One operator of the FM emulation
|
|
|
|
#define BX_SB16_FM_NOP 36 // OPL3 has 36 operators
|
|
|
|
#define BX_SB16_FM_OPB 6 // one operator has 6 bytes
|
|
|
|
typedef Bit8u bx_sb16_fm_operator[BX_SB16_FM_OPB];
|
|
|
|
/* Explanation of the values:
|
|
|
|
(note [xx] is one bit for xx; [5 xx] is five bits for xx,
|
|
|
|
all bits listed MSB to LSB)
|
|
|
|
|
|
|
|
[0] = [Tremolo][Vibrato][Sustain][KSR][4 Frequency Multiply]
|
|
|
|
[1] = [2 Key Scale Level][6 Output Level for modulators, reserved for others]
|
|
|
|
[2] = [4 Attack Rate][4 Decay Rate]
|
|
|
|
[3] = [4 Sustain Level][4 Release Rate]
|
|
|
|
[4] = [2 reserved][Right][Left][3 Feedback Factor][SynthType]
|
|
|
|
[5] = [5 reserved][3 Waveform Select]
|
|
|
|
|
|
|
|
Frequency and Output Level are really properties of the channel,
|
|
|
|
so they get stored there. However, Output Level of the modulator
|
|
|
|
in FM synthesis varies the instrument.
|
|
|
|
|
|
|
|
[4] is only set for the first operator, and zeroed for the others.
|
|
|
|
|
|
|
|
All reserved bits are zeroed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// One channel (1 to 4 operators)
|
|
|
|
#define BX_SB16_FM_NCH 18 // OPL3 has at most 18 channels
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
int nop; // number of operators used: 0=disabled, 1=percussion, 2 or 4=melodic
|
|
|
|
int ncarr; // how many carriers this channel has (1..3)
|
|
|
|
int opnum[4]; // operator numbers
|
|
|
|
Bit16u freq; // frequency (in a special code)
|
|
|
|
Bit32u afreq; // actual frequency in milli-Hertz (10^-3 Hz)
|
|
|
|
Boolean freqch; // byte of the frequency that has changed recently
|
|
|
|
Bit8u midichan; // assigned midi channel
|
|
|
|
Boolean needprogch; // has the instrument changed
|
|
|
|
Bit8u midinote; // currently playing midi note
|
|
|
|
Boolean midion; // is the note on
|
|
|
|
Bit16u midibend; // current value of the pitch bender
|
|
|
|
Bit8u outputlevel[4];// 6-bit output level attenuations
|
|
|
|
Bit8u midivol; // current midi volume (velocity)
|
|
|
|
} bx_sb16_fm_channel;
|
|
|
|
|
|
|
|
|
|
|
|
// This is the class for the input and
|
|
|
|
// output FIFO buffers of the SB16
|
|
|
|
|
|
|
|
class bx_sb16_buffer {
|
|
|
|
public:
|
|
|
|
|
|
|
|
BX_SB16_BUFINL bx_sb16_buffer(void);
|
|
|
|
BX_SB16_BUFINL ~bx_sb16_buffer(void);
|
|
|
|
BX_SB16_BUFINL void init(int bufferlen);
|
|
|
|
BX_SB16_BUFINL void reset();
|
|
|
|
|
|
|
|
/* These functions return 1 on success and 0 on error */
|
|
|
|
BX_SB16_BUFINL Boolean put(Bit8u data); // write one byte in the buffer
|
|
|
|
BX_SB16_BUFINL Boolean puts(char *data, ...); // write a formatted string to the buffer
|
|
|
|
BX_SB16_BUFINL Boolean get(Bit8u *data); // read the next available byte
|
|
|
|
BX_SB16_BUFINL Boolean getw(Bit16u *data); // get word, in order lo/hi
|
|
|
|
BX_SB16_BUFINL Boolean getw1(Bit16u *data);// get word, in order hi/lo
|
|
|
|
BX_SB16_BUFINL Boolean full(void); // is the buffer full?
|
|
|
|
BX_SB16_BUFINL Boolean empty(void); // is it empty?
|
|
|
|
|
|
|
|
BX_SB16_BUFINL void flush(void); // empty the buffer
|
|
|
|
BX_SB16_BUFINL int bytes(void); // return number of bytes in the buffer
|
|
|
|
BX_SB16_BUFINL Bit8u peek(int ahead); // peek ahead number of bytes
|
|
|
|
|
|
|
|
/* These are for caching the command number */
|
|
|
|
BX_SB16_BUFINL void newcommand(Bit8u newcmd, int bytes); // start a new command with length bytes
|
|
|
|
BX_SB16_BUFINL Bit8u currentcommand(void); // return the current command
|
|
|
|
BX_SB16_BUFINL void clearcommand(void); // clear the command
|
|
|
|
BX_SB16_BUFINL Boolean commanddone(void); // return if all bytes have arrived
|
|
|
|
BX_SB16_BUFINL Boolean hascommand(void); // return if there is a pending command
|
|
|
|
BX_SB16_BUFINL int commandbytes(void); // return the length of the command
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
Bit8u *buffer;
|
|
|
|
int head,tail,length;
|
|
|
|
Bit8u command;
|
|
|
|
Boolean havecommand;
|
|
|
|
int bytesneeded;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// forward definition
|
|
|
|
class BX_SOUND_OUTPUT_C_DEF;
|
|
|
|
|
|
|
|
// The actual emulator class, emulating the sound blaster ports
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
class bx_sb16_c : public logfunctions {
|
2001-04-10 05:04:59 +04:00
|
|
|
public:
|
|
|
|
|
|
|
|
bx_sb16_c(void);
|
|
|
|
~bx_sb16_c(void);
|
|
|
|
BX_SB16_SMF void init(bx_devices_c *);
|
|
|
|
|
|
|
|
/* DMA input and output, 8 and 16 bit, have to be public */
|
|
|
|
BX_SB16_SMF void dma_write8(Bit8u *data_byte);
|
|
|
|
BX_SB16_SMF void dma_read8(Bit8u *data_byte);
|
|
|
|
BX_SB16_SMF void dma_write16(Bit16u *data_word);
|
|
|
|
BX_SB16_SMF void dma_read16(Bit16u *data_word);
|
|
|
|
|
|
|
|
/* the OPL timer event handler has to be called by the timer */
|
|
|
|
BX_SB16_SMF void opl_timerevent();
|
|
|
|
|
|
|
|
/* Make writelog available to output functions */
|
|
|
|
BX_SB16_SMF void writelog(int loglevel, const char *str, ...);
|
|
|
|
|
|
|
|
// DMA8 and DMA16 also public, they're read in devices.cc
|
|
|
|
int currentdma8;
|
|
|
|
int currentdma16;
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
FILE *logfile;
|
|
|
|
FILE *midifile,*wavefile; // the output files or devices
|
|
|
|
BX_SOUND_OUTPUT_C_DEF *output;// the output class
|
|
|
|
int currentirq;
|
|
|
|
|
|
|
|
// the MPU 401 relevant variables
|
|
|
|
struct bx_sb16_mpu_struct {
|
|
|
|
bx_sb16_buffer datain, dataout, cmd, midicmd;
|
|
|
|
Boolean uartmode, irqpending, forceuartmode, singlecommand;
|
|
|
|
|
|
|
|
int banklsb[BX_SB16_PATCHTABLESIZE];
|
|
|
|
int bankmsb[BX_SB16_PATCHTABLESIZE]; // current patch lists
|
|
|
|
int program[BX_SB16_PATCHTABLESIZE];
|
|
|
|
|
|
|
|
int outputinit, timer_handle;
|
|
|
|
int current_timer; // no. of delta times passed
|
|
|
|
Bit32u last_delta_time; // timer value at last command
|
|
|
|
} mpu401;
|
|
|
|
|
|
|
|
// the DSP variables
|
|
|
|
struct bx_sb16_dsp_struct {
|
|
|
|
bx_sb16_buffer datain, dataout;
|
|
|
|
Bit8u resetport; // last value written to the reset port
|
|
|
|
Bit8u speaker,prostereo; // properties of the sound input/output
|
|
|
|
Boolean irqpending; // Is an IRQ pending (not ack'd)
|
|
|
|
Boolean midiuartmode; // Is the DSP in MIDI UART mode
|
|
|
|
struct bx_sb16_dsp_dma_struct {
|
|
|
|
// Properties of the current DMA transfer:
|
|
|
|
// mode= 0: no transfer, 1: single-cycle transfer, 2: auto-init DMA
|
|
|
|
// bits= 8 or 16
|
|
|
|
// fifo= ?? Bit used in DMA command, no idea what it means...
|
|
|
|
// output= 0: input, 1: output
|
|
|
|
// bps= bytes per sample; =(dmabits/8)*(dmastereo+1)
|
|
|
|
// stereo= 0: mono, 1: stereo
|
|
|
|
// issigned= 0: unsigned data, 1: signed data
|
|
|
|
// highspeed= 0: normal mode, 1: highspeed mode (only SBPro)
|
|
|
|
// timer= so many us between data bytes
|
|
|
|
int mode, bits, fifo, output, bps;
|
|
|
|
int stereo, issigned, highspeed, format, timer;
|
|
|
|
Bit16u count; // bytes remaining in this transfer
|
|
|
|
Bit8u *chunk; // buffers up to BX_SB16_WAVEPACKETSIZE bytes
|
|
|
|
int chunkindex; // index into the buffer
|
|
|
|
int chunkcount; // for input: size of the recorded input
|
|
|
|
Bit16u timeconstant;
|
|
|
|
Bit16u blocklength, samplerate;
|
|
|
|
} dma;
|
|
|
|
int timer_handle; // handle for the DMA timer
|
|
|
|
int outputinit; // have the output functions been initialized
|
|
|
|
} dsp;
|
|
|
|
|
|
|
|
enum bx_sb16_fm_mode {single, adlib, dual, opl3};
|
|
|
|
|
|
|
|
// the variables common to all FM emulations
|
|
|
|
struct bx_sb16_opl_struct {
|
|
|
|
bx_sb16_fm_mode mode;
|
|
|
|
// modes: single: one OPL2 (OPL3 disabled),
|
|
|
|
// adlib: one OPL2 (no OPL3),
|
|
|
|
// dual: two seperate OPL2
|
|
|
|
// opl3: one OPL3 (enabled)
|
|
|
|
|
|
|
|
int timer_handle;
|
|
|
|
int timer_running;
|
|
|
|
Bit16u midichannels; // bitmask: unused midichannels
|
|
|
|
int drumchannel; // midi channel for percussion (10)
|
|
|
|
int index[2]; // index register for the two chips
|
|
|
|
int wsenable[2]; // wave form select enable
|
|
|
|
int timer[4]; // two timers on each chip
|
|
|
|
int timerinit[4]; // initial timer counts
|
|
|
|
int tmask[2]; // the timer masking byte for both chips
|
|
|
|
int tflag[2]; // shows if the timer overflow has occured
|
|
|
|
int percmode[2]; // percussion mode enabled
|
|
|
|
int cyhhnote[2]; // cymbal and high hat midi notes
|
|
|
|
int cyhhon[2]; // cymbal and high hat notes on
|
|
|
|
bx_sb16_fm_operator oper[BX_SB16_FM_NOP];
|
|
|
|
bx_sb16_fm_channel chan[BX_SB16_FM_NCH];
|
|
|
|
} opl;
|
|
|
|
|
|
|
|
struct bx_sb16_mixer_struct {
|
|
|
|
Bit8u regindex;
|
|
|
|
Bit8u reg[BX_SB16_MIX_REG];
|
|
|
|
} mixer;
|
|
|
|
|
|
|
|
struct bx_sb16_emul_struct {
|
|
|
|
bx_sb16_buffer datain, dataout;
|
|
|
|
bx_sb16_ins_map remaplist[256];
|
|
|
|
int remaps;
|
|
|
|
} emuldata;
|
|
|
|
|
|
|
|
bx_devices_c *devices;
|
|
|
|
|
|
|
|
/* the MPU 401 part of the emulator */
|
|
|
|
BX_SB16_SMF Bit32u mpu_status(); // read status port 3x1
|
|
|
|
BX_SB16_SMF void mpu_command(Bit32u value); // write command port 3x1
|
|
|
|
BX_SB16_SMF Bit32u mpu_dataread(); // read data port 3x0
|
|
|
|
BX_SB16_SMF void mpu_datawrite(Bit32u value); // write data port 3x0
|
|
|
|
BX_SB16_SMF void mpu_mididata(Bit32u value); // get a midi byte
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
static void mpu_timer (void *);
|
2001-04-10 05:04:59 +04:00
|
|
|
|
|
|
|
/* The DSP part */
|
|
|
|
BX_SB16_SMF void dsp_reset(Bit32u value); // write to reset port 2x6
|
|
|
|
BX_SB16_SMF Bit32u dsp_dataread(); // read from data port 2xa
|
|
|
|
BX_SB16_SMF void dsp_datawrite(Bit32u value); // write to data port 2xa
|
|
|
|
BX_SB16_SMF Bit32u dsp_bufferstatus(); // read buffer status 2xc
|
|
|
|
BX_SB16_SMF Bit32u dsp_status(); // read dsp status 2xe
|
|
|
|
BX_SB16_SMF void dsp_getsamplebyte(Bit8u value);
|
|
|
|
BX_SB16_SMF Bit8u dsp_putsamplebyte();
|
|
|
|
BX_SB16_SMF void dsp_sendwavepacket();
|
|
|
|
BX_SB16_SMF void dsp_getwavepacket();
|
|
|
|
BX_SB16_SMF Bit32u dsp_irq16ack(); // ack 16 bit IRQ 2xf
|
|
|
|
BX_SB16_SMF void dsp_dma(Bit8u command, Bit8u mode, Bit16u length, Bit8u comp);
|
|
|
|
// initiate a DMA transfer
|
|
|
|
BX_SB16_SMF void dsp_dmadone(); // stop a DMA transfer
|
|
|
|
BX_SB16_SMF void dsp_enabledma(); // enable the transfer
|
|
|
|
BX_SB16_SMF void dsp_disabledma(); // temporarily disable DMA
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
static void dsp_dmatimer (void *);
|
2001-04-10 05:04:59 +04:00
|
|
|
|
|
|
|
/* The mixer part */
|
|
|
|
BX_SB16_SMF Bit32u mixer_readdata(void);
|
|
|
|
BX_SB16_SMF void mixer_writedata(Bit32u value);
|
|
|
|
BX_SB16_SMF void mixer_writeregister(Bit32u value);
|
|
|
|
BX_SB16_SMF void set_irq_dma();
|
|
|
|
|
|
|
|
/* The emulator ports to change emulator properties */
|
|
|
|
BX_SB16_SMF Bit32u emul_read (void); // read emulator port
|
|
|
|
BX_SB16_SMF void emul_write(Bit32u value); // write emulator port
|
|
|
|
|
|
|
|
/* The FM emulation part */
|
|
|
|
BX_SB16_SMF void opl_entermode(bx_sb16_fm_mode newmode);
|
|
|
|
BX_SB16_SMF Bit32u opl_status(int chipid);
|
|
|
|
BX_SB16_SMF void opl_index(Bit32u value, int chipid);
|
|
|
|
BX_SB16_SMF void opl_data(Bit32u value, int chipid);
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
static void opl_timer(void *);
|
2001-04-10 05:04:59 +04:00
|
|
|
BX_SB16_SMF void opl_changeop(int channum, int opernum, int byte, int value);
|
|
|
|
BX_SB16_SMF void opl_settimermask(int value, int chipid);
|
|
|
|
BX_SB16_SMF void opl_set4opmode(int new4opmode);
|
|
|
|
BX_SB16_SMF void opl_setmodulation(int channel);
|
|
|
|
BX_SB16_SMF void opl_setpercussion(Bit8u value, int chipid);
|
|
|
|
BX_SB16_SMF void opl_setvolume(int channel, int opnum, int outlevel);
|
|
|
|
BX_SB16_SMF void opl_setfreq(int channel);
|
|
|
|
BX_SB16_SMF void opl_keyonoff(int channel, Boolean onoff);
|
|
|
|
BX_SB16_SMF void opl_midichannelinit(int channel);
|
|
|
|
|
|
|
|
/* several high level sound handlers */
|
|
|
|
BX_SB16_SMF int currentdeltatime();
|
|
|
|
BX_SB16_SMF void processmidicommand(Boolean force);
|
|
|
|
BX_SB16_SMF void midiremapprogram(int channel); // remap program change
|
|
|
|
BX_SB16_SMF int converttodeltatime(Bit32u deltatime, Bit8u value[4]);
|
|
|
|
BX_SB16_SMF void writemidicommand(int command, int length, Bit8u data[]);
|
|
|
|
BX_SB16_SMF void writedeltatime(Bit32u deltatime);
|
|
|
|
// write in delta time coding
|
|
|
|
|
|
|
|
BX_SB16_SMF void initmidifile(); // Write midi file header
|
|
|
|
BX_SB16_SMF void finishmidifile(); // write track length etc.
|
|
|
|
BX_SB16_SMF void initvocfile(); // Write voc file header
|
|
|
|
BX_SB16_SMF void writevocblock(int block, Bit32u headerlen, Bit8u header[],
|
|
|
|
Bit32u datalen, Bit8u data[]);
|
|
|
|
BX_SB16_SMF void finishvocfile(); // close voc file
|
|
|
|
|
|
|
|
/* The port IO multiplexer functions */
|
|
|
|
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
static Bit32u read_handler(void *this_ptr, Bit32u address, unsigned io_len);
|
|
|
|
static void write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len);
|
2001-04-10 05:04:59 +04:00
|
|
|
|
|
|
|
#if !BX_USE_SB16_SMF
|
|
|
|
Bit32u read(Bit32u address, unsigned io_len);
|
|
|
|
void write(Bit32u address, Bit32u value, unsigned io_len);
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
// The class with the output functions
|
merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net
2001-05-15 18:49:57 +04:00
|
|
|
class bx_sound_output_c : public logfunctions {
|
2001-04-10 05:04:59 +04:00
|
|
|
public:
|
|
|
|
|
|
|
|
/* These functions are the sound output functions, sending
|
|
|
|
the music/sound to the OS specific driver.
|
|
|
|
They are in a different file (sound.cc) because they are
|
|
|
|
non-portable, while everything in sb16.cc is portable */
|
|
|
|
|
|
|
|
bx_sound_output_c(bx_sb16_c *sb16);
|
|
|
|
BX_SOUND_VIRTUAL ~bx_sound_output_c();
|
|
|
|
|
|
|
|
BX_SOUND_VIRTUAL int waveready();
|
|
|
|
BX_SOUND_VIRTUAL int midiready();
|
|
|
|
|
|
|
|
BX_SOUND_VIRTUAL int openmidioutput(char *device);
|
|
|
|
BX_SOUND_VIRTUAL int sendmidicommand(int delta, int command, int length, Bit8u data[]);
|
|
|
|
BX_SOUND_VIRTUAL int closemidioutput();
|
|
|
|
|
|
|
|
BX_SOUND_VIRTUAL int openwaveoutput(char *device);
|
|
|
|
BX_SOUND_VIRTUAL int startwaveplayback(int frequency, int bits, int stereo, int format);
|
|
|
|
BX_SOUND_VIRTUAL int sendwavepacket(int length, Bit8u data[]);
|
|
|
|
BX_SOUND_VIRTUAL int stopwaveplayback();
|
|
|
|
BX_SOUND_VIRTUAL int closewaveoutput();
|
|
|
|
};
|
|
|
|
|
|
|
|
extern bx_sb16_c bx_sb16;
|
|
|
|
|
2001-06-21 22:34:50 +04:00
|
|
|
#define WRITELOG sb16->writelog
|
|
|
|
#define BOTHLOG(x) (x)
|
|
|
|
#define MIDILOG(x) ((bx_options.sb16.Omidimode->get ()>0?x:0x7f))
|
|
|
|
#define WAVELOG(x) ((bx_options.sb16.Owavemode->get ()>0?x:0x7f))
|
|
|
|
|
2001-04-10 05:04:59 +04:00
|
|
|
#include "soundlnx.h"
|
|
|
|
#include "soundwin.h"
|