Bochs/bochs/iodev/virt_timer.cc

550 lines
16 KiB
C++
Raw Normal View History

////////////////////////////////////////////////////////////////////////
// $Id: virt_timer.cc,v 1.19 2003-08-26 20:24:36 cbothamy Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
//
//Realtime Algorithm (with gettimeofday)
// HAVE:
// Real number of usec.
// Emulated number of usec.
// WANT:
// Number of ticks to use.
// Number of emulated usec to wait until next try.
//
// ticks=number of ticks needed to match total real usec.
// if(desired ticks > max ticks for elapsed real time)
// ticks = max ticks for elapsed real time.
// if(desired ticks > max ticks for elapsed emulated usec)
// ticks = max ticks for emulated usec.
// next wait ticks = number of ticks until next event.
// next wait real usec = (current ticks + next wait ticks) * usec per ticks
// next wait emulated usec = next wait real usec * emulated usec / real usec
// if(next wait emulated usec < minimum emulated usec for next wait ticks)
// next wait emulated usec = minimum emulated usec for next wait ticks.
// if(next wait emulated usec > max emulated usec wait)
// next wait emulated usec = max emulated usec wait.
//
// How to calculate elapsed real time:
// store an unused time value whenever no ticks are used in a given time.
// add this to the current elapsed time.
// How to calculate elapsed emulated time:
// same as above.
// Above can be done by not updating last_usec and last_sec.
//
// How to calculate emulated usec/real usec:
// Each time there are actual ticks:
// Alpha_product(old emulated usec, emulated usec);
// Alpha_product(old real usec, real usec);
// Divide resulting values.
//
/////////////////////////////////////////////////////////////////////////
2003-08-04 17:27:39 +04:00
#include "bochs.h"
#define BX_USE_VIRTUAL_TIMERS 1
#define BX_VIRTUAL_TIMERS_REALTIME 1
//Important constant #defines:
#define USEC_PER_SECOND (1000000)
// define a macro to convert floating point numbers into 64-bit integers.
// In MSVC++ you can convert a 64-bit float into a 64-bit signed integer,
// but it will not convert a 64-bit float into a 64-bit unsigned integer.
// This macro works around that.
#define F2I(x) ((Bit64u)(Bit64s) (x))
#define I2F(x) ((double)(Bit64s) (x))
//CONFIGURATION #defines:
//MAINLINE Configuration (For realtime PIT):
//How much faster than real time we can go:
#define MAX_MULT (1.25)
//Minimum number of emulated useconds per second.
// Now calculated using BX_MIN_IPS, the minimum number of
// instructions per second.
#define MIN_USEC_PER_SECOND (((((Bit64u)USEC_PER_SECOND)*((Bit64u)BX_MIN_IPS))/((Bit64u)(bx_options.Oips->get())))+(Bit64u)1)
//DEBUG configuration:
//Debug with printf options.
#define DEBUG_REALTIME_WITH_PRINTF 0
//Use to test execution at multiples of real time.
#define TIME_DIVIDER (1)
#define TIME_MULTIPLIER (1)
#define TIME_HEADSTART (0)
#define GET_VIRT_REALTIME64_USEC() (((bx_get_realtime64_usec()*(Bit64u)TIME_MULTIPLIER/(Bit64u)TIME_DIVIDER)))
//Set up Logging.
#define LOG_THIS bx_virt_timer.
//A single instance.
bx_virt_timer_c bx_virt_timer;
//Generic MAX and MIN Functions
#define BX_MAX(a,b) ( ((a)>(b))?(a):(b) )
#define BX_MIN(a,b) ( ((a)>(b))?(b):(a) )
//USEC_ALPHA is multiplier for the past.
//USEC_ALPHA_B is 1-USEC_ALPHA, or multiplier for the present.
#define USEC_ALPHA ((double)(.8))
#define USEC_ALPHA_B ((double)(((double)1)-USEC_ALPHA))
#define USEC_ALPHA2 ((double)(.5))
#define USEC_ALPHA2_B ((double)(((double)1)-USEC_ALPHA2))
#define ALPHA_LOWER(old,new) ((Bit64u)((old<new)?((USEC_ALPHA*(I2F(old)))+(USEC_ALPHA_B*(I2F(new)))):((USEC_ALPHA2*(I2F(old)))+(USEC_ALPHA2_B*(I2F(new))))))
//Conversion between emulated useconds and optionally realtime ticks.
#define TICKS_TO_USEC(a) ( ((a)*usec_per_second)/ticks_per_second )
#define USEC_TO_TICKS(a) ( ((a)*ticks_per_second)/usec_per_second )
bx_virt_timer_c::bx_virt_timer_c( void )
{
put("VTIMER");
settype(VTIMERLOG);
numTimers = 0;
current_timers_time = 0;
timers_next_event_time = BX_MAX_VIRTUAL_TIME;
last_sequential_time = 0;
in_timer_handler = 0;
virtual_next_event_time = BX_MAX_VIRTUAL_TIME;
current_virtual_time = 0;
use_virtual_timers = BX_USE_VIRTUAL_TIMERS;
init_done = 0;
}
bx_virt_timer_c::~bx_virt_timer_c( void )
{
}
const Bit64u bx_virt_timer_c::NullTimerInterval = BX_MAX_VIRTUAL_TIME;
void
bx_virt_timer_c::nullTimer(void* this_ptr) {
UNUSED(this_ptr);
}
void
bx_virt_timer_c::periodic(Bit64u time_passed) {
//Assert that we haven't skipped any events.
BX_ASSERT (time_passed <= timers_next_event_time);
BX_ASSERT(!in_timer_handler);
//Update time variables.
timers_next_event_time -= time_passed;
current_timers_time += time_passed;
//If no events are occurring, just pass the time and we're done.
if( time_passed < timers_next_event_time ) {
return;
}
//Starting timer handler calls.
in_timer_handler = 1;
//Otherwise, cause any events to occur that should.
unsigned i;
for(i=0;i<numTimers;i++) {
if( timer[i].inUse && timer[i].active ) {
//Assert that we haven't skipped any timers.
BX_ASSERT(current_timers_time <= timer[i].timeToFire);
if(timer[i].timeToFire == current_timers_time) {
if(timer[i].continuous) {
timer[i].timeToFire+=timer[i].period;
} else {
timer[i].active = 0;
}
//This function MUST return, or the timer mechanism
// will be broken.
timer[i].funct(timer[i].this_ptr);
}
}
}
//Finished timer handler calls.
in_timer_handler = 0;
//Use a second FOR loop so that a timer function call can
// change the behavior of another timer.
//timers_next_event_time normally contains a cycle count, not a cycle time.
// here we use it as a temporary variable that IS a cycle time,
// but then convert it back to a cycle count afterwards.
timers_next_event_time = current_timers_time + BX_MAX_VIRTUAL_TIME;
for(i=0;i<numTimers;i++) {
if( timer[i].inUse && timer[i].active && ((timer[i].timeToFire)<timers_next_event_time) ) {
timers_next_event_time = timer[i].timeToFire;
}
}
timers_next_event_time-=current_timers_time;
next_event_time_update();
//FIXME
}
//Get the current virtual time.
// This may return the same value on subsequent calls.
Bit64u
bx_virt_timer_c::time_usec(void) {
if(!use_virtual_timers) {
return bx_pc_system.time_usec();
}
//Update the time here only if we're not in a timer handler.
//If we're in a timer handler we're up-to-date, and otherwise
// this prevents call stack loops.
if(!in_timer_handler) {
timer_handler();
}
return current_timers_time;
}
//Get the current virtual time.
// This will return a monotonically increasing value.
// MUST NOT be called from within a timer interrupt.
Bit64u
bx_virt_timer_c::time_usec_sequential(void) {
if(!use_virtual_timers) {
return bx_pc_system.time_usec_sequential();
}
//Can't prevent call stack loops here, so this
// MUST NOT be called from within a timer handler.
BX_ASSERT(timers_next_event_time>0);
BX_ASSERT(!in_timer_handler);
if(last_sequential_time >= current_timers_time) {
periodic(1);
last_sequential_time = current_timers_time;
}
return current_timers_time;
}
//Register a timer handler to go off after a given interval.
//Register a timer handler to go off with a periodic interval.
int
bx_virt_timer_c::register_timer( void *this_ptr, bx_timer_handler_t handler,
Bit32u useconds,
bx_bool continuous, bx_bool active,
const char *id) {
if(!use_virtual_timers) {
return bx_pc_system.register_timer(this_ptr, handler, useconds,
continuous, active, id);
}
//We don't like starting with a zero period timer.
BX_ASSERT((!active) || (useconds>0));
//Search for an unused timer.
unsigned int i;
for (i=0; i < numTimers; i++) {
if (timer[i].inUse == 0 || i==numTimers)
break;
}
// If we didn't find a free slot, increment the bound, numTimers.
if (i==numTimers)
numTimers++; // One new timer installed.
BX_ASSERT(numTimers<BX_MAX_VIRTUAL_TIMERS);
timer[i].inUse = 1;
timer[i].period = useconds;
timer[i].timeToFire = current_timers_time + (Bit64u)useconds;
timer[i].active = active;
timer[i].continuous = continuous;
timer[i].funct = handler;
timer[i].this_ptr = this_ptr;
strncpy(timer[i].id, id, BxMaxTimerIDLen);
timer[i].id[BxMaxTimerIDLen-1]=0; //I like null terminated strings.
if(useconds < timers_next_event_time) {
timers_next_event_time = useconds;
next_event_time_update();
//FIXME
}
return i;
}
//unregister a previously registered timer.
unsigned
bx_virt_timer_c::unregisterTimer(int timerID) {
if(!use_virtual_timers) {
return bx_pc_system.unregisterTimer(timerID);
}
BX_ASSERT(timerID >= 0);
BX_ASSERT(timerID < BX_MAX_VIRTUAL_TIMERS);
if (timer[timerID].active) {
BX_PANIC(("unregisterTimer: timer '%s' is still active!", timer[timerID].id));
return(0); // Fail.
}
//No need to prevent doing this to unused timers.
timer[timerID].inUse = 0;
return(1);
}
void
bx_virt_timer_c::start_timers(void) {
if(!use_virtual_timers) {
bx_pc_system.start_timers();
return;
}
//FIXME
}
//activate a deactivated but registered timer.
void
bx_virt_timer_c::activate_timer( unsigned timer_index, Bit32u useconds,
bx_bool continuous ) {
if(!use_virtual_timers) {
bx_pc_system.activate_timer(timer_index, useconds, continuous);
return;
}
BX_ASSERT(timer_index >= 0);
BX_ASSERT(timer_index < BX_MAX_VIRTUAL_TIMERS);
BX_ASSERT(timer[timer_index].inUse);
BX_ASSERT(useconds>0);
timer[timer_index].period=useconds;
timer[timer_index].timeToFire = current_timers_time + (Bit64u)useconds;
timer[timer_index].active=1;
timer[timer_index].continuous=continuous;
if(useconds < timers_next_event_time) {
timers_next_event_time = useconds;
next_event_time_update();
//FIXME
}
}
//deactivate (but don't unregister) a currently registered timer.
void
bx_virt_timer_c::deactivate_timer( unsigned timer_index ) {
if(!use_virtual_timers) {
bx_pc_system.deactivate_timer(timer_index);
return;
}
BX_ASSERT(timer_index >= 0);
BX_ASSERT(timer_index < BX_MAX_VIRTUAL_TIMERS);
//No need to prevent doing this to unused/inactive timers.
timer[timer_index].active = 0;
}
void
bx_virt_timer_c::advance_virtual_time(Bit64u time_passed) {
BX_ASSERT(time_passed <= virtual_next_event_time);
current_virtual_time += time_passed;
virtual_next_event_time -= time_passed;
if(current_virtual_time > current_timers_time) {
periodic(current_virtual_time - current_timers_time);
}
}
//Called when next_event_time changes.
void
bx_virt_timer_c::next_event_time_update(void) {
virtual_next_event_time = timers_next_event_time + current_timers_time - current_virtual_time;
if(init_done) {
bx_pc_system.deactivate_timer(system_timer_id);
BX_ASSERT(virtual_next_event_time);
bx_pc_system.activate_timer(system_timer_id,
(Bit32u)BX_MIN(0x7FFFFFFF,BX_MAX(1,TICKS_TO_USEC(virtual_next_event_time))),
0);
}
}
void
bx_virt_timer_c::init(void) {
if ( (bx_options.clock.Osync->get ()!=BX_CLOCK_SYNC_REALTIME)
&& (bx_options.clock.Osync->get ()!=BX_CLOCK_SYNC_BOTH) )
virtual_timers_realtime = 0;
else
virtual_timers_realtime = 1;
if (virtual_timers_realtime) {
BX_INFO(("using 'realtime pit' synchronization method"));
}
2003-08-04 17:27:39 +04:00
register_timer(this, nullTimer, (Bit32u)NullTimerInterval, 1, 1, "Null Timer");
system_timer_id = bx_pc_system.register_timer(this, pc_system_timer_handler,virtual_next_event_time , 0, 1, "Virtual Timer");
//Real time variables:
last_real_time=GET_VIRT_REALTIME64_USEC()+(Bit64u)TIME_HEADSTART*(Bit64u)USEC_PER_SECOND;
total_real_usec=0;
last_realtime_delta=0;
//System time variables:
last_usec = 0
;
usec_per_second = USEC_PER_SECOND;
stored_delta=0;
last_system_usec=0;
em_last_realtime=0;
//Virtual timer variables:
total_ticks=0;
last_realtime_ticks=0;
ticks_per_second = USEC_PER_SECOND;
init_done = 1;
}
void
bx_virt_timer_c::timer_handler(void) {
if(!virtual_timers_realtime) {
Bit64u temp_final_time = bx_pc_system.time_usec();
temp_final_time-=current_virtual_time;
while(temp_final_time) {
if((temp_final_time)>(virtual_next_event_time)) {
temp_final_time-=virtual_next_event_time;
advance_virtual_time(virtual_next_event_time);
} else {
advance_virtual_time(temp_final_time);
temp_final_time-=temp_final_time;
}
}
bx_pc_system.activate_timer(system_timer_id,
(Bit32u)BX_MIN(0x7FFFFFFF,(virtual_next_event_time>2)?(virtual_next_event_time-2):1),
0);
return;
}
Bit64u usec_delta = bx_pc_system.time_usec()-last_usec;
if (usec_delta) {
#if BX_HAVE_REALTIME_USEC
Bit64u ticks_delta = 0;
Bit64u real_time_delta = GET_VIRT_REALTIME64_USEC() - last_real_time;
Bit64u real_time_total = real_time_delta + total_real_usec;
Bit64u system_time_delta = (Bit64u)usec_delta + (Bit64u)stored_delta;
if(real_time_delta) {
last_realtime_delta = real_time_delta;
last_realtime_ticks = total_ticks;
}
ticks_per_second = USEC_PER_SECOND;
//Start out with the number of ticks we would like
// to have to line up with real time.
ticks_delta = real_time_total - total_ticks;
if(real_time_total < total_ticks) {
//This slows us down if we're already ahead.
// probably only an issue on startup, but it solves some problems.
ticks_delta = 0;
}
if(ticks_delta + total_ticks - last_realtime_ticks > (F2I(MAX_MULT * I2F(last_realtime_delta)))) {
//This keeps us from going too fast in relation to real time.
#if 0
ticks_delta = (F2I(MAX_MULT * I2F(last_realtime_delta))) + last_realtime_ticks - total_ticks;
#endif
ticks_per_second = F2I(MAX_MULT * I2F(USEC_PER_SECOND));
}
if(ticks_delta > system_time_delta * USEC_PER_SECOND / MIN_USEC_PER_SECOND) {
//This keeps us from having too few instructions between ticks.
ticks_delta = system_time_delta * USEC_PER_SECOND / MIN_USEC_PER_SECOND;
}
if(ticks_delta > virtual_next_event_time) {
//This keeps us from missing ticks.
ticks_delta = virtual_next_event_time;
}
if(ticks_delta) {
# if DEBUG_REALTIME_WITH_PRINTF
//Every second print some info.
if(((last_real_time + real_time_delta) / USEC_PER_SECOND) > (last_real_time / USEC_PER_SECOND)) {
Bit64u temp1, temp2, temp3, temp4;
temp1 = (Bit64u) total_real_usec;
temp2 = (total_real_usec);
temp3 = (Bit64u)total_ticks;
temp4 = (Bit64u)((total_real_usec) - total_ticks);
printf("useconds: %llu, ",temp1);
printf("expect ticks: %llu, ",temp2);
printf("ticks: %llu, ",temp3);
printf("diff: %llu\n",temp4);
}
# endif
last_real_time += real_time_delta;
total_real_usec += real_time_delta;
last_system_usec += system_time_delta;
stored_delta = 0;
total_ticks += ticks_delta;
} else {
stored_delta = system_time_delta;
}
Bit64u a,b;
a=(usec_per_second);
if(real_time_delta) {
//FIXME
Bit64u em_realtime_delta = last_system_usec + stored_delta - em_last_realtime;
b=((Bit64u)USEC_PER_SECOND * em_realtime_delta / real_time_delta);
em_last_realtime = last_system_usec + stored_delta;
} else {
b=a;
}
usec_per_second = ALPHA_LOWER(a,b);
#else
BX_ASSERT(0);
#endif
advance_virtual_time(ticks_delta);
}
last_usec=last_usec + usec_delta;
bx_pc_system.deactivate_timer(system_timer_id);
BX_ASSERT(virtual_next_event_time);
bx_pc_system.activate_timer(system_timer_id,
(Bit32u)BX_MIN(0x7FFFFFFF,BX_MAX(1,TICKS_TO_USEC(virtual_next_event_time))),
0);
}
void
bx_virt_timer_c::pc_system_timer_handler(void* this_ptr) {
((bx_virt_timer_c *)this_ptr)->timer_handler();
}