Bochs/bochs/.bochsrc

329 lines
14 KiB
Plaintext
Raw Normal View History

# You many now use double quotes around pathnames, in case
# your pathname includes spaces.
#=======================================================================
# ROMIMAGE:
# You now need to load a ROM BIOS into F0000-FFFFF. I've wiped
# out most of the BIOS hooks, and replace them with real BIOS
# support. Normally, you can use a precompiled BIOS in the bios/
# directory, named BIOS-bochs-yymmdd. Use the latest one in there.
#=======================================================================
#romimage: bios/BIOS-bochs-970717a
romimage: file=bios/BIOS-bochs-latest, address=0xf0000
#romimage: file=bios/BIOS-bochs-2-processors, address=0xf0000
#romimage: file=bios/BIOS-bochs-4-processors, address=0xf0000
#romimage: file=bios/rombios.bin, address=0xf0000
#=======================================================================
# MEGS
# set this to the default number of Megabytes of memory you want
# to emulate. You may also pass the '-megs xyz' option to bochs
#
# The default is 32MB, most OS's won't need more than that.
#=======================================================================
#megs: 256
#megs: 128
#megs: 64
megs: 32
#megs: 16
#megs: 8
#=======================================================================
# VGAROMIMAGE
# You now need to load a VGA ROM BIOS into C0000.
#=======================================================================
vgaromimage: bios/VGABIOS-elpin-2.40
#=======================================================================
# FLOPPYA:
# Point this to pathname of floppy image file or device
# This should be of a bootable floppy(image/device) if you're
# booting from 'a'.
#
# You can set the initial status of the media to 'ejected' or 'inserted'.
# floppya: 2_88=path, status=ejected (2.88M 3.5" floppy)
# floppya: 1_44=path, status=inserted (1.44M 3.5" floppy)
# floppya: 1_2=path, status=ejected (1.2M 5.25" floppy)
# floppya: 720k=path, status=inserted (720K 3.5" floppy)
#
# The default is 1_44=/dev/fd0, at least I think that's what most people use.
#=======================================================================
#floppya: 1_44=/dev/fd0, status=ejected
#floppya: file=../1.44, status=ejected
#floppya: 1_44=/dev/fd0H1440, status=ejected
#floppya: 1_2=../1_2, status=ejected
2001-05-31 23:56:27 +04:00
floppya: 1_44=a.img, status=inserted
#=======================================================================
# FLOPPYB:
2001-05-31 23:56:27 +04:00
# See FLOPPYA above for syntax
#=======================================================================
2001-05-31 23:56:27 +04:00
floppyb: 1_44=b.img, status=inserted
#=======================================================================
# DISKC: file=, cyl=, heads=, spt=
# Point this at a 10M, 20M, or 30M hard disk image file.
# Read INSTALL to create one.
# Examples:
# diskc: file=10M.sample, cyl=306, heads=4, spt=17
# diskc: file=20M.sample, cyl=615, heads=4, spt=17
# diskc: file=30M.sample, cyl=615, heads=6, spt=17
# diskc: file=46M.sample, cyl=940, heads=6, spt=17
# diskc: file=62M.sample, cyl=940, heads=8, spt=17
# diskc: file=112M.sample, cyl=900, heads=15, spt=17
# diskc: file=483M.sample, cyl=1024, heads=15, spt=63
#=======================================================================
diskc: file="30M.sample", cyl=615, heads=6, spt=17
2001-05-31 23:56:27 +04:00
#=======================================================================
# DISKD:
# See DISKC above for syntax
#
# NOTE: diskd and cdromd must not be used together!
#=======================================================================
#diskd: file="diskd.img", cyl=615, heads=6, spt=17
#=======================================================================
# CDROM
# cdromd: dev=/dev/cdrom, status=inserted
# cdromd: dev=/dev/cdrom, status=ejected
#=======================================================================
#cdromd: dev=/dev/cdrom, status=ejected
#cdromd: dev=/dev/cdrom, status=inserted
#=======================================================================
# NEWHARDDRIVESUPPORT: enabled=[0|1]
# As of cvs version on 5/17/2001, newharddrivesupport is on by default.
#=======================================================================
#newharddrivesupport: enabled=1
#=======================================================================
# BOOT:
# This defines your boot drive. You can either boot from 'a' or 'c'.
# Examples:
# boot: c
# boot: a
#=======================================================================
#boot: a
boot: c
#=======================================================================
# LOG:
# Give the path of the log file you'd like Bochs debug and misc. verbage
# to be written to. If you really don't want it, make it /dev/null. :^(
#
# Examples:
# log: ./bochs.out
# log: /dev/tty
#=======================================================================
#log: /dev/null
log: bochsout.txt
#=======================================================================
# LOG CONTROLS
#
# Bochs now has four severity levels for event logging.
# panic: cannot proceed. If you choose to continue after a panic,
# don't be surprised if you get strange behavior or crashes.
# error: something went wrong, but it is probably safe to continue the
# simulation.
# info: interesting or useful messages.
# debug: messages useful only when debugging the code. This may
# spit out thousands per second.
#
# For events of each level, you can choose to crash, report, or ignore.
# TODO: allow choice based on the facility: e.g. crash on panics from
# everything except the cdrom, and only report those.
#
# If you are experiencing many panics, it can be helpful to change
# the panic action to report instead of fatal. However, be aware
# that anything executed after a panic is uncharted territory and can
# cause bochs to become unstable. The panic is a "graceful exit," so
# if you disable it you may get a spectacular disaster instead.
#=======================================================================
panic: action=ask
error: action=report
info: action=report
debug: action=ignore
#=======================================================================
# SB16:
# This defines the SB16 sound emulation. It can have several of the
# following properties.
# All properties are in the format sb16: property=value
# midi: The filename is where the midi data is sent. This can be a
# device or just a file if you want to record the midi data.
# midimode:
# 0=no data
# 1=output to device (system dependent. midi denotes the device driver)
# 2=SMF file output, including headers
# 3=output the midi data stream to the file (no midi headers and no
# delta times, just command and data bytes)
# wave: This is the device/file where wave output is stored
# wavemode:
# 0=no data
# 1=output to device (system dependent. wave denotes the device driver)
# 2=VOC file output, incl. headers
# 3=output the raw wave stream to the file
# log: The file to write the sb16 emulator messages to.
# loglevel:
# 0=no log
# 1=only midi program and bank changes
# 2=severe errors
# 3=all errors
# 4=all errors plus all port accesses
# 5=all errors and port accesses plus a lot of extra info
# dmatimer:
# microseconds per second for a DMA cycle. Make it smaller to fix
# non-continous sound. 750000 is usually a good value. This needs a
# reasonably correct setting for IPS.
#
# For an example look at the next line:
#=======================================================================
#sb16: midimode=1, midi=/dev/midi00, wavemode=1, wave=/dev/dsp, loglevel=2, log=sb16.log, dmatimer=600000
#=======================================================================
# VGA_UPDATE_INTERVAL:
# Video memory is scanned for updates and screen updated every so many
# virtual seconds. The default is 300000, about 3Hz. This is generally
# plenty. Keep in mind that you must tweak the 'ips:' directive
# to be as close to the number of emulated instructions-per-second
# your workstation can do, for this to be accurate.
#
# Examples:
# vga_update_interval: 250000
#=======================================================================
vga_update_interval: 300000
# using for Winstone '98 tests
#vga_update_interval: 100000
#=======================================================================
# KEYBOARD_SERIAL_DELAY:
# Approximate time in microseconds that it takes one character to
# be transfered from the keyboard to controller over the serial path.
# Examples:
# keyboard_serial_delay: 200
#=======================================================================
keyboard_serial_delay: 250
#=======================================================================
# FLOPPY_COMMAND_DELAY:
# Time in microseconds to wait before completing some floppy commands
# such as read/write/seek/etc, which normally have a delay associated.
# I had this hardwired to 50,000 before.
#
# Examples:
# floppy_command_delay: 50000
#=======================================================================
floppy_command_delay: 500
#=======================================================================
# IPS:
# Emulated Instructions Per Second. This is the number of IPS that bochs
# is capable of running on your machine. Read the note in config.h
# on how to find this. Make sure to recompile after.
#
# IPS is used to calibrate many time-dependent events within the bochs
# simulation. For example, changing IPS affects the frequency of VGA
# updates, the duration of time before a key starts to autorepeat, and
# the measurement of BogoMips and other benchmarks.
#
# Examples:
# Machine Mips
# ________________________________________________________________
# 650Mhz Athlon K-7 with Linux 2.4.4/egcs-2.91.66 2 to 2.5 Mips
# 400Mhz Pentium II with Linux 2.0.36/egcs-1.0.3 1 to 1.8 Mips
# 166Mhz 64bit Sparc with Solaris 2.x approx 0.75 Mips
# 200Mhz Pentium with Linux 2.x approx 0.5 Mips
#
#=======================================================================
ips: 1000000
#=======================================================================
# MAX_IPS and SYSTEM_CLOCK_SYNC
# These two options are experimental, and may not even be implemented
# yet. If MAX_IPS is set to a value other than 0, Bochs will try to
# slow down the simulation until the average instructions per unit time
# reaches MAX_IPS. This can be used to prevent Bochs from speeding through
# wait intervals, which has caused problems with key autorepeats and
# other time sensitive tasks. SYSTEM_CLOCK_SYNC prohibits the Bochs
# simulation from running (very much) faster than the system clock, also
# by inserting delays occasionally. Some examples of how ips,max_ips,
# and system_clock sync interact:
# 1. ips=500000, max_ips=0, system_clock_sync disabled
# Bochs runs as fast as possible. Timer interrupts are scheduled
# as if it was running at 500000 instructions per second. This is
# the old behavior, and it's still the default.
# 2. ips=500000, max_ips=700000, system_clock_sync enabled.
# Bochs will not run faster than system time, and if it gets behind
# it will run at a maximum of 40% faster than real time until it
# catches up.
# 3. ips=500000, max_ips=500000, system_clock_sync disabled
# If Bochs gets behind, it will stay behind forever
# instead of running faster to catch up with the system clock.
#=======================================================================
max_ips: 0
system_clock_sync: enabled=0
#=======================================================================
# mouse: Not used in any of the GUI specific modules, but the option
# bx_options.mouse_enabled is set to this value. The idea,
# is that the GUI code should not generate mouse events when
# not enabled. The hardware emualation itself is not disabled
# by this. This is to facilitate deterministic runs of bochs.
#
# Examples:
# mouse: enabled=1
# mouse: enabled=0
#
# I wouldn't recommend enabling the mouse by default, unless you have a
# really good reason to do so.
#=======================================================================
mouse: enabled=0
#=======================================================================
# private_colormap: Request that the GUI create and use it's own
# non-shared colormap. This colormap will be used
# when in the bochs window. If not enabled, a
# shared colormap scheme may be used. Not implemented
# on all GUI's.
#
# Examples:
# private_colormap: enabled=1
# private_colormap: enabled=0
#=======================================================================
private_colormap: enabled=0
#=======================================================================
# fullscreen: ONLY IMPLEMENTED ON AMIGA
# Request that Bochs occupy the entire screen instead of a
# window.
#
# Examples:
# fullscreen: enabled=0
# fullscreen: enabled=1
#=======================================================================
fullscreen: enabled=0
#=======================================================================
# other stuff
#=======================================================================
# magic_break
2001-05-25 17:18:45 +04:00
# ne2k: ioaddr=0x280, irq=9, mac=b0:c4:20:00:00:00, ethmod=fbsd, ethdev=xl0
#load32bitOSImage: os=nullkernel, path=../kernel.img, iolog=../vga_io.log
#load32bitOSImage: os=linux, path=../linux.img, iolog=../vga_io.log, initrd=../initrd.img
i440fxsupport: enabled=0
#time0: 938581955
#=======================================================================
# for Macintosh, use the style of pathnames in the following
# examples.
#
# vgaromimage: :bios:VGABIOS-elpin-2.20
# romimage: file=:bios:BIOS-bochs-981222a, address=0xf0000
# floppya: 1_44=[fd:], status=inserted
#=======================================================================