2004-06-18 18:11:11 +04:00
|
|
|
/*============================================================================
|
|
|
|
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
|
|
|
|
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
|
|
|
|
floating point emulation.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
|
|
these four paragraphs for those parts of this code that are retained.
|
|
|
|
=============================================================================*/
|
|
|
|
|
|
|
|
/*============================================================================
|
|
|
|
* Written for Bochs (x86 achitecture simulator) by
|
|
|
|
* Stanislav Shwartsman (gate at fidonet.org.il)
|
|
|
|
* ==========================================================================*/
|
|
|
|
|
|
|
|
#include "softfloatx80.h"
|
|
|
|
#include "softfloat-round-pack.h"
|
|
|
|
#include "softfloat-macros.h"
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
|
|
| Returns the result of converting the extended double-precision floating-
|
|
|
|
| point value `a' to the 16-bit two's complement integer format. The
|
|
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
|
|
| Floating-Point Arithmetic - which means in particular that the conversion
|
|
|
|
| is rounded according to the current rounding mode. If `a' is a NaN or the
|
|
|
|
| conversion overflows, the integer indefinite value is returned.
|
|
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
Bit16s floatx80_to_int16(floatx80 a, float_status_t &status)
|
|
|
|
{
|
|
|
|
if (floatx80_is_unsupported(a))
|
|
|
|
{
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
return int16_indefinite;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bit32s v32 = floatx80_to_int32(a, status);
|
|
|
|
|
2005-02-17 00:36:16 +03:00
|
|
|
if ((v32 > 32767) || (v32 < -32768))
|
2004-06-18 18:11:11 +04:00
|
|
|
{
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
return int16_indefinite;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (Bit16s) v32;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
|
|
| Returns the result of converting the extended double-precision floating-
|
|
|
|
| point value `a' to the 16-bit two's complement integer format. The
|
|
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
|
|
| toward zero. If `a' is a NaN or the conversion overflows, the integer
|
|
|
|
| indefinite value is returned.
|
|
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
Bit16s floatx80_to_int16_round_to_zero(floatx80 a, float_status_t &status)
|
|
|
|
{
|
|
|
|
if (floatx80_is_unsupported(a))
|
|
|
|
{
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
return int16_indefinite;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bit32s v32 = floatx80_to_int32_round_to_zero(a, status);
|
|
|
|
|
2005-02-17 00:36:16 +03:00
|
|
|
if ((v32 > 32767) || (v32 < -32768))
|
2004-06-18 18:11:11 +04:00
|
|
|
{
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
return int16_indefinite;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (Bit16s) v32;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
|
|
| Separate the source extended double-precision floating point value `a'
|
|
|
|
| into its exponent and significand, store the significant back to the
|
|
|
|
| 'a' and return the exponent. The operation performed is a superset of
|
|
|
|
| the IEC/IEEE recommended logb(x) function.
|
|
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
floatx80 floatx80_extract(floatx80 &a, float_status_t &status)
|
|
|
|
{
|
|
|
|
Bit64u aSig = extractFloatx80Frac(a);
|
|
|
|
Bit32s aExp = extractFloatx80Exp(a);
|
|
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
|
|
|
|
if (floatx80_is_unsupported(a))
|
|
|
|
{
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
a = floatx80_default_nan;
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (aExp == 0x7FFF) {
|
|
|
|
if ((Bit64u) (aSig<<1))
|
|
|
|
{
|
|
|
|
a = propagateFloatx80NaN(a, status);
|
|
|
|
return a;
|
|
|
|
}
|
2004-07-24 23:26:50 +04:00
|
|
|
return packFloatx80(0, 0x7FFF, BX_CONST64(0x8000000000000000));
|
2004-06-18 18:11:11 +04:00
|
|
|
}
|
|
|
|
if (aExp == 0)
|
|
|
|
{
|
|
|
|
if (aSig == 0) {
|
|
|
|
float_raise(status, float_flag_divbyzero);
|
|
|
|
a = packFloatx80(aSign, 0, 0);
|
|
|
|
return packFloatx80(1, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
|
|
}
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
|
|
}
|
|
|
|
|
|
|
|
a.exp = (aSign << 15) + 0x3FFF;
|
|
|
|
a.fraction = aSig;
|
|
|
|
return int32_to_floatx80(aExp - 0x3FFF);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
|
|
| Scales extended double-precision floating-point value in operand `a' by
|
|
|
|
| value `b'. The function truncates the value in the second operand 'b' to
|
|
|
|
| an integral value and adds that value to the exponent of the operand 'a'.
|
|
|
|
| The operation performed according to the IEC/IEEE Standard for Binary
|
|
|
|
| Floating-Point Arithmetic.
|
|
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
floatx80 floatx80_scale(floatx80 a, floatx80 b, float_status_t &status)
|
|
|
|
{
|
|
|
|
Bit32s aExp, bExp;
|
|
|
|
Bit64u aSig, bSig;
|
|
|
|
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
|
|
if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
|
|
|
|
{
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
return floatx80_default_nan;
|
|
|
|
}
|
|
|
|
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
|
|
aExp = extractFloatx80Exp(a);
|
|
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
bSig = extractFloatx80Frac(b);
|
|
|
|
bExp = extractFloatx80Exp(b);
|
|
|
|
int bSign = extractFloatx80Sign(b);
|
|
|
|
|
|
|
|
if (aExp == 0x7FFF) {
|
|
|
|
if ((Bit64u) (aSig<<1) || ((bExp == 0x7FFF) && (Bit64u) (bSig<<1)))
|
|
|
|
{
|
|
|
|
return propagateFloatx80NaN(a, b, status);
|
|
|
|
}
|
|
|
|
if ((bExp == 0x7FFF) && bSign) {
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
return floatx80_default_nan;
|
|
|
|
}
|
|
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
if (bExp == 0x7FFF) {
|
|
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
|
|
if ((aExp | aSig) == 0) {
|
|
|
|
if (! bSign) {
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
return floatx80_default_nan;
|
|
|
|
}
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
|
|
if (bSign) return packFloatx80(aSign, 0, 0);
|
|
|
|
return packFloatx80(aSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
|
|
if (aSig == 0) return a;
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
|
|
}
|
|
|
|
if (bExp == 0) {
|
|
|
|
if (bSig == 0) return a;
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bExp > 0x400E) {
|
|
|
|
/* generate appropriate overflow/underflow */
|
|
|
|
return roundAndPackFloatx80(80, aSign,
|
|
|
|
bSign ? -0x3FFF : 0x7FFF, aSig, 0, status);
|
|
|
|
}
|
|
|
|
if (bExp < 0x3FFF) return a;
|
|
|
|
|
|
|
|
int shiftCount = 0x403E - bExp;
|
|
|
|
bSig >>= shiftCount;
|
|
|
|
Bit32s scale = bSig;
|
|
|
|
if (bSign) scale = -scale; /* -32768..32767 */
|
|
|
|
return
|
|
|
|
roundAndPackFloatx80(80, aSign, aExp+scale, aSig, 0, status);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
|
|
| Determine extended-precision floating-point number class.
|
|
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
float_class_t floatx80_class(floatx80 a)
|
|
|
|
{
|
|
|
|
Bit32s aExp = extractFloatx80Exp(a);
|
|
|
|
Bit64u aSig = extractFloatx80Frac(a);
|
|
|
|
|
|
|
|
if(aExp == 0) {
|
|
|
|
if (aSig == 0)
|
|
|
|
return float_zero;
|
|
|
|
|
|
|
|
/* denormal or pseudo-denormal */
|
|
|
|
return float_denormal;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* valid numbers have the MS bit set */
|
|
|
|
if (!(aSig & BX_CONST64(0x8000000000000000)))
|
|
|
|
return float_NaN; /* report unsupported as NaNs */
|
|
|
|
|
|
|
|
if(aExp == 0x7fff) {
|
|
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
|
|
|
|
if (((Bit64u) (aSig<< 1)) == 0)
|
|
|
|
return (aSign) ? float_negative_inf : float_positive_inf;
|
|
|
|
|
|
|
|
return float_NaN;
|
|
|
|
}
|
|
|
|
|
|
|
|
return float_normalized;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
|
|
| Compare between two extended precision floating point numbers. Returns
|
|
|
|
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
|
|
|
|
| the value 'a' is less than the corresponding value `b',
|
|
|
|
| 'float_relation_greater' if the value 'a' is greater than the corresponding
|
|
|
|
| value `b', or 'float_relation_unordered' otherwise.
|
|
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
int floatx80_compare(floatx80 a, floatx80 b, float_status_t &status)
|
|
|
|
{
|
|
|
|
float_class_t aClass = floatx80_class(a);
|
|
|
|
float_class_t bClass = floatx80_class(b);
|
|
|
|
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
|
|
{
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
return float_relation_unordered;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
|
|
{
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((a.fraction == b.fraction) && (a.exp == b.exp))
|
|
|
|
{
|
|
|
|
return float_relation_equal;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (aClass == float_zero && bClass == float_zero)
|
|
|
|
{
|
|
|
|
return float_relation_equal;
|
|
|
|
}
|
|
|
|
|
|
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
int bSign = extractFloatx80Sign(b);
|
|
|
|
if (aSign != bSign)
|
|
|
|
return (aSign) ? float_relation_less : float_relation_greater;
|
|
|
|
|
|
|
|
int less_than =
|
|
|
|
aSign ? lt128(b.exp, b.fraction, a.exp, a.fraction)
|
|
|
|
: lt128(a.exp, a.fraction, b.exp, b.fraction);
|
|
|
|
|
|
|
|
if (less_than) return float_relation_less;
|
|
|
|
return float_relation_greater;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
|
|
| Compare between two extended precision floating point numbers. Returns
|
|
|
|
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
|
|
|
|
| the value 'a' is less than the corresponding value `b',
|
|
|
|
| 'float_relation_greater' if the value 'a' is greater than the corresponding
|
|
|
|
| value `b', or 'float_relation_unordered' otherwise. Quiet NaNs do not cause
|
|
|
|
| an exception.
|
|
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status_t &status)
|
|
|
|
{
|
|
|
|
float_class_t aClass = floatx80_class(a);
|
|
|
|
float_class_t bClass = floatx80_class(b);
|
|
|
|
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
|
|
{
|
|
|
|
if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
|
|
|
|
if (floatx80_is_signaling_nan(a) || floatx80_is_signaling_nan(b))
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
|
|
|
|
|
|
return float_relation_unordered;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
|
|
{
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((a.fraction == b.fraction) && (a.exp == b.exp))
|
|
|
|
{
|
|
|
|
return float_relation_equal;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (aClass == float_zero && bClass == float_zero)
|
|
|
|
{
|
|
|
|
return float_relation_equal;
|
|
|
|
}
|
|
|
|
|
|
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
int bSign = extractFloatx80Sign(b);
|
|
|
|
if (aSign != bSign)
|
|
|
|
return (aSign) ? float_relation_less : float_relation_greater;
|
|
|
|
|
|
|
|
int less_than =
|
|
|
|
aSign ? lt128(b.exp, b.fraction, a.exp, a.fraction)
|
|
|
|
: lt128(a.exp, a.fraction, b.exp, b.fraction);
|
|
|
|
|
|
|
|
if (less_than) return float_relation_less;
|
|
|
|
return float_relation_greater;
|
|
|
|
}
|