196 lines
8.1 KiB
C++
196 lines
8.1 KiB
C++
|
/*============================================================================
|
||
|
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||
|
Arithmetic Package, Release 2b.
|
||
|
|
||
|
Written by John R. Hauser. This work was made possible in part by the
|
||
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
||
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
||
|
National Science Foundation under grant MIP-9311980. The original version
|
||
|
of this code was written as part of a project to build a fixed-point vector
|
||
|
processor in collaboration with the University of California at Berkeley,
|
||
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||
|
arithmetic/SoftFloat.html'.
|
||
|
|
||
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||
|
|
||
|
Derivative works are acceptable, even for commercial purposes, so long as
|
||
|
(1) the source code for the derivative work includes prominent notice that
|
||
|
the work is derivative, and (2) the source code includes prominent notice with
|
||
|
these four paragraphs for those parts of this code that are retained.
|
||
|
=============================================================================*/
|
||
|
|
||
|
#define FLOAT128
|
||
|
|
||
|
/*============================================================================
|
||
|
* Adapted for Bochs (x86 achitecture simulator) by
|
||
|
* Stanislav Shwartsman (gate at fidonet.org.il)
|
||
|
* ==========================================================================*/
|
||
|
|
||
|
#include "softfloat.h"
|
||
|
#include "softfloat-specialize.h"
|
||
|
|
||
|
/*----------------------------------------------------------------------------
|
||
|
| Takes two single-precision floating-point values `a' and `b', one of which
|
||
|
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||
|
| signaling NaN, the invalid exception is raised.
|
||
|
*----------------------------------------------------------------------------*/
|
||
|
|
||
|
float32 propagateFloat32NaN(float32 a, float32 b, float_status_t &status)
|
||
|
{
|
||
|
int aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||
|
|
||
|
aIsNaN = float32_is_nan(a);
|
||
|
aIsSignalingNaN = float32_is_signaling_nan(a);
|
||
|
bIsNaN = float32_is_nan(b);
|
||
|
bIsSignalingNaN = float32_is_signaling_nan(b);
|
||
|
a |= 0x00400000;
|
||
|
b |= 0x00400000;
|
||
|
if (aIsSignalingNaN | bIsSignalingNaN) float_raise(status, float_flag_invalid);
|
||
|
if (get_float_nan_handling_mode(status) == float_larger_significand_nan) {
|
||
|
if (aIsSignalingNaN) {
|
||
|
if (bIsSignalingNaN) goto returnLargerSignificand;
|
||
|
return bIsNaN ? b : a;
|
||
|
}
|
||
|
else if (aIsNaN) {
|
||
|
if (bIsSignalingNaN | ! bIsNaN) return a;
|
||
|
returnLargerSignificand:
|
||
|
if ((Bit32u) (a<<1) < (Bit32u) (b<<1)) return b;
|
||
|
if ((Bit32u) (b<<1) < (Bit32u) (a<<1)) return a;
|
||
|
return (a < b) ? a : b;
|
||
|
}
|
||
|
else {
|
||
|
return b;
|
||
|
}
|
||
|
} else {
|
||
|
return (aIsSignalingNaN | aIsNaN) ? a : b;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*----------------------------------------------------------------------------
|
||
|
| Takes two double-precision floating-point values `a' and `b', one of which
|
||
|
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||
|
| signaling NaN, the invalid exception is raised.
|
||
|
*----------------------------------------------------------------------------*/
|
||
|
|
||
|
float64 propagateFloat64NaN(float64 a, float64 b, float_status_t &status)
|
||
|
{
|
||
|
int aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||
|
aIsNaN = float64_is_nan(a);
|
||
|
aIsSignalingNaN = float64_is_signaling_nan(a);
|
||
|
bIsNaN = float64_is_nan(b);
|
||
|
bIsSignalingNaN = float64_is_signaling_nan(b);
|
||
|
a |= BX_CONST64(0x0008000000000000);
|
||
|
b |= BX_CONST64(0x0008000000000000);
|
||
|
if (aIsSignalingNaN | bIsSignalingNaN) float_raise(status, float_flag_invalid);
|
||
|
if (get_float_nan_handling_mode(status) == float_larger_significand_nan) {
|
||
|
if (aIsSignalingNaN) {
|
||
|
if (bIsSignalingNaN) goto returnLargerSignificand;
|
||
|
return bIsNaN ? b : a;
|
||
|
}
|
||
|
else if (aIsNaN) {
|
||
|
if (bIsSignalingNaN | ! bIsNaN) return a;
|
||
|
returnLargerSignificand:
|
||
|
if ((Bit64u) (a<<1) < (Bit64u) (b<<1)) return b;
|
||
|
if ((Bit64u) (b<<1) < (Bit64u) (a<<1)) return a;
|
||
|
return (a < b) ? a : b;
|
||
|
}
|
||
|
else {
|
||
|
return b;
|
||
|
}
|
||
|
} else {
|
||
|
return (aIsSignalingNaN | aIsNaN) ? a : b;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef FLOATX80
|
||
|
|
||
|
/*----------------------------------------------------------------------------
|
||
|
| Takes two extended double-precision floating-point values `a' and `b', one
|
||
|
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||
|
| `b' is a signaling NaN, the invalid exception is raised.
|
||
|
*----------------------------------------------------------------------------*/
|
||
|
|
||
|
floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status_t &status)
|
||
|
{
|
||
|
int aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||
|
aIsNaN = floatx80_is_nan(a);
|
||
|
aIsSignalingNaN = floatx80_is_signaling_nan(a);
|
||
|
bIsNaN = floatx80_is_nan(b);
|
||
|
bIsSignalingNaN = floatx80_is_signaling_nan(b);
|
||
|
a.fraction |= BX_CONST64(0xC000000000000000);
|
||
|
b.fraction |= BX_CONST64(0xC000000000000000);
|
||
|
if (aIsSignalingNaN | bIsSignalingNaN) float_raise(status, float_flag_invalid);
|
||
|
if (aIsSignalingNaN) {
|
||
|
if (bIsSignalingNaN) goto returnLargerSignificand;
|
||
|
return bIsNaN ? b : a;
|
||
|
}
|
||
|
else if (aIsNaN) {
|
||
|
if (bIsSignalingNaN | ! bIsNaN) return a;
|
||
|
returnLargerSignificand:
|
||
|
if (a.fraction < b.fraction) return b;
|
||
|
if (b.fraction < a.fraction) return a;
|
||
|
return (a.exp < b.exp) ? a : b;
|
||
|
}
|
||
|
else {
|
||
|
return b;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*----------------------------------------------------------------------------
|
||
|
| The pattern for a default generated extended double-precision NaN.
|
||
|
*----------------------------------------------------------------------------*/
|
||
|
const floatx80 floatx80_default_nan =
|
||
|
packFloatx80(0, floatx80_default_nan_exp, floatx80_default_nan_fraction);
|
||
|
|
||
|
#endif /* FLOATX80 */
|
||
|
|
||
|
#ifdef FLOAT128
|
||
|
|
||
|
/*----------------------------------------------------------------------------
|
||
|
| Takes two quadruple-precision floating-point values `a' and `b', one of
|
||
|
| which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||
|
| `b' is a signaling NaN, the invalid exception is raised.
|
||
|
*----------------------------------------------------------------------------*/
|
||
|
|
||
|
float128 propagateFloat128NaN(float128 a, float128 b, float_status_t &status)
|
||
|
{
|
||
|
int aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||
|
aIsNaN = float128_is_nan(a);
|
||
|
aIsSignalingNaN = float128_is_signaling_nan(a);
|
||
|
bIsNaN = float128_is_nan(b);
|
||
|
bIsSignalingNaN = float128_is_signaling_nan(b);
|
||
|
a.hi |= BX_CONST64(0x0000800000000000);
|
||
|
b.hi |= BX_CONST64(0x0000800000000000);
|
||
|
if (aIsSignalingNaN | bIsSignalingNaN) float_raise(status, float_flag_invalid);
|
||
|
if (aIsSignalingNaN) {
|
||
|
if (bIsSignalingNaN) goto returnLargerSignificand;
|
||
|
return bIsNaN ? b : a;
|
||
|
}
|
||
|
else if (aIsNaN) {
|
||
|
if (bIsSignalingNaN | !bIsNaN) return a;
|
||
|
returnLargerSignificand:
|
||
|
if (lt128(a.hi<<1, a.lo, b.hi<<1, b.lo)) return b;
|
||
|
if (lt128(b.hi<<1, b.lo, a.hi<<1, a.lo)) return a;
|
||
|
return (a.hi < b.hi) ? a : b;
|
||
|
}
|
||
|
else {
|
||
|
return b;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*----------------------------------------------------------------------------
|
||
|
| The pattern for a default generated quadruple-precision NaN.
|
||
|
*----------------------------------------------------------------------------*/
|
||
|
const float128 float128_default_nan =
|
||
|
packFloat128(float128_default_nan_hi, float128_default_nan_lo);
|
||
|
|
||
|
#endif /* FLOAT128 */
|