Bochs/bochs/cpu/bit32.cc

368 lines
9.4 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
// $Id: bit32.cc,v 1.14 2008-08-11 18:53:23 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 3
2008-08-10 23:34:28 +04:00
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSF_GdEdR(bxInstruction_c *i)
{
2008-08-10 23:34:28 +04:00
Bit32u op2_32 = BX_READ_32BIT_REG(i->rm());
if (op2_32 == 0) {
assert_ZF(); /* op1_32 undefined */
}
2008-07-13 14:44:34 +04:00
else {
2008-08-10 23:34:28 +04:00
Bit32u op1_32 = 0;
2008-07-13 14:44:34 +04:00
while ((op2_32 & 0x01) == 0) {
op1_32++;
op2_32 >>= 1;
}
2008-07-13 14:44:34 +04:00
SET_FLAGS_OSZAPC_LOGIC_32(op1_32);
clear_ZF();
2008-07-13 14:44:34 +04:00
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
}
2008-08-10 23:34:28 +04:00
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSR_GdEdR(bxInstruction_c *i)
{
2008-08-10 23:34:28 +04:00
Bit32u op2_32 = BX_READ_32BIT_REG(i->rm());
if (op2_32 == 0) {
assert_ZF(); /* op1_32 undefined */
}
2008-07-13 14:44:34 +04:00
else {
2008-08-10 23:34:28 +04:00
Bit32u op1_32 = 31;
2008-07-13 14:44:34 +04:00
while ((op2_32 & 0x80000000) == 0) {
op1_32--;
op2_32 <<= 1;
}
2008-07-13 14:44:34 +04:00
SET_FLAGS_OSZAPC_LOGIC_32(op1_32);
clear_ZF();
2008-07-13 14:44:34 +04:00
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdGdM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit32u op1_32, op2_32, index;
Bit32s displacement32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_32 = BX_READ_32BIT_REG(i->nnn());
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = eaddr + 4 * displacement32;
if (! i->as32L())
op1_addr = (Bit16u) op1_addr;
#if BX_SUPPORT_X86_64
else if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
#endif
/* pointer, segment address pair */
op1_32 = read_virtual_dword(i->seg(), op1_addr);
set_CF((op1_32 >> index) & 0x01);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdGdM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit32u op1_32, op2_32, index;
Bit32s displacement32;
bx_bool bit_i;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_32 = BX_READ_32BIT_REG(i->nnn());
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = eaddr + 4 * displacement32;
if (! i->as32L())
op1_addr = (Bit16u) op1_addr;
#if BX_SUPPORT_X86_64
else if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
#endif
/* pointer, segment address pair */
op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr);
bit_i = (op1_32 >> index) & 0x01;
op1_32 |= (((Bit32u) 1) << index);
write_RMW_virtual_dword(op1_32);
set_CF(bit_i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
op1_32 |= (((Bit32u) 1) << op2_32);
/* now write result back to the destination */
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdGdM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit32u op1_32, op2_32, index;
Bit32s displacement32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_32 = BX_READ_32BIT_REG(i->nnn());
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = eaddr + 4 * displacement32;
if (! i->as32L())
op1_addr = (Bit16u) op1_addr;
#if BX_SUPPORT_X86_64
else if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
#endif
/* pointer, segment address pair */
op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr);
bx_bool temp_cf = (op1_32 >> index) & 0x01;
op1_32 &= ~(((Bit32u) 1) << index);
/* now write back to destination */
write_RMW_virtual_dword(op1_32);
set_CF(temp_cf);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
op1_32 &= ~(((Bit32u) 1) << op2_32);
/* now write result back to the destination */
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdGdM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit32u op1_32, op2_32, index_32;
Bit32s displacement32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_32 = BX_READ_32BIT_REG(i->nnn());
index_32 = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32;
op1_addr = eaddr + 4 * displacement32;
if (! i->as32L())
op1_addr = (Bit16u) op1_addr;
#if BX_SUPPORT_X86_64
else if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
#endif
op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr);
bx_bool temp_CF = (op1_32 >> index_32) & 0x01;
op1_32 ^= (((Bit32u) 1) << index_32); /* toggle bit */
set_CF(temp_CF);
write_RMW_virtual_dword(op1_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 &= 0x1f;
bx_bool temp_CF = (op1_32 >> op2_32) & 0x01;
op1_32 ^= (((Bit32u) 1) << op2_32); /* toggle bit */
set_CF(temp_CF);
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdIbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_virtual_dword(i->seg(), eaddr);
Bit8u op2_8 = i->Ib() & 0x1f;
set_CF((op1_32 >> op2_8) & 0x01);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdIbR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
Bit8u op2_8 = i->Ib() & 0x1f;
set_CF((op1_32 >> op2_8) & 0x01);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 |= (((Bit32u) 1) << op2_8);
write_RMW_virtual_dword(op1_32);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 |= (((Bit32u) 1) << op2_8);
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 ^= (((Bit32u) 1) << op2_8); /* toggle bit */
write_RMW_virtual_dword(op1_32);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 ^= (((Bit32u) 1) << op2_8); /* toggle bit */
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 &= ~(((Bit32u) 1) << op2_8);
write_RMW_virtual_dword(op1_32);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 &= ~(((Bit32u) 1) << op2_8);
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
set_CF(temp_CF);
}
/* 0F B8 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPCNT_GdEdR(bxInstruction_c *i)
{
#if BX_SUPPORT_POPCNT || (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
Bit32u op2_32 = BX_READ_32BIT_REG(i->rm());
Bit32u op1_32 = 0;
while (op2_32 != 0) {
if (op2_32 & 1) op1_32++;
op2_32 >>= 1;
}
Bit32u flags = op1_32 ? 0 : EFlagsZFMask;
setEFlagsOSZAPC(flags);
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
#else
BX_INFO(("POPCNT_GdEd: required POPCNT support, use --enable-popcnt option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#endif // (BX_CPU_LEVEL >= 3)