Bochs/bochs/fpu/poly_tan.c

161 lines
5.2 KiB
C
Raw Normal View History

/*---------------------------------------------------------------------------+
| poly_tan.c |
| $Id: poly_tan.c,v 1.5 2003-05-15 16:19:39 sshwarts Exp $
| |
| Compute the tan of a FPU_REG, using a polynomial approximation. |
| |
| Copyright (C) 1992,1993,1994,1997,1999 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
| Australia. E-mail billm@melbpc.org.au |
| |
| |
+---------------------------------------------------------------------------*/
#include "exception.h"
#include "reg_constant.h"
#include "fpu_emu.h"
#include "fpu_system.h"
#include "control_w.h"
#include "poly.h"
#define HiPOWERop 3 /* odd poly, positive terms */
static const u64 oddplterm[HiPOWERop] =
{
BX_CONST64(0x0000000000000000),
BX_CONST64(0x0051a1cf08fca228),
BX_CONST64(0x0000000071284ff7)
};
#define HiPOWERon 2 /* odd poly, negative terms */
static const u64 oddnegterm[HiPOWERon] =
{
BX_CONST64(0x1291a9a184244e80),
BX_CONST64(0x0000583245819c21)
};
#define HiPOWERep 2 /* even poly, positive terms */
static const u64 evenplterm[HiPOWERep] =
{
BX_CONST64(0x0e848884b539e888),
BX_CONST64(0x00003c7f18b887da)
};
#define HiPOWERen 2 /* even poly, negative terms */
static const u64 evennegterm[HiPOWERen] =
{
BX_CONST64(0xf1f0200fd51569cc),
BX_CONST64(0x003afb46105c4432)
};
static const u64 twothirds = BX_CONST64(0xaaaaaaaaaaaaaaab);
/*--- poly_tan() ------------------------------------------------------------+
| |
+---------------------------------------------------------------------------*/
void poly_tan(FPU_REG *st0_ptr, int invert)
{
s32 exponent;
Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
argSignif;
exponent = exponent(st0_ptr);
#ifdef PARANOID
if ( signnegative(st0_ptr) ) /* Can't hack a number < 0.0 */
{ arith_invalid(0); return; } /* Need a positive number */
#endif /* PARANOID */
if ( (exponent >= 0)
|| ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) )
{
EXCEPTION(0x250);
}
else
{
argSignif.lsw = 0;
XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
if ( exponent < -1 )
{
/* shift the argument right by the required places */
if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U )
XSIG_LL(accum) ++; /* round up */
}
}
XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw;
mul_Xsig_Xsig(&argSq, &argSq);
XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw;
mul_Xsig_Xsig(&argSqSq, &argSqSq);
/* Compute the negative terms for the numerator polynomial */
accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1);
mul_Xsig_Xsig(&accumulatoro, &argSq);
negate_Xsig(&accumulatoro);
/* Add the positive terms */
polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1);
/* Compute the positive terms for the denominator polynomial */
accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1);
mul_Xsig_Xsig(&accumulatore, &argSq);
negate_Xsig(&accumulatore);
/* Add the negative terms */
polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1);
/* Multiply by arg^2 */
mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
/* de-normalize and divide by 2 */
shr_Xsig(&accumulatore, -2*(1+exponent) + 1);
negate_Xsig(&accumulatore); /* This does 1 - accumulator */
/* Now find the ratio. */
if ( accumulatore.msw == 0 )
{
/* accumulatoro must contain 1.0 here, (actually, 0) but it
really doesn't matter what value we use because it will
have negligible effect in later calculations
*/
XSIG_LL(accum) = BX_CONST64(0x8000000000000000);
accum.lsw = 0;
}
else
{
div_Xsig(&accumulatoro, &accumulatore, &accum);
}
/* Multiply by 1/3 * arg^3 */
mul64_Xsig(&accum, &XSIG_LL(argSignif));
mul64_Xsig(&accum, &XSIG_LL(argSignif));
mul64_Xsig(&accum, &XSIG_LL(argSignif));
mul64_Xsig(&accum, &twothirds);
shr_Xsig(&accum, -2*(exponent+1));
/* tan(arg) = arg + accum */
add_two_Xsig(&accum, &argSignif, &exponent);
if ( invert )
{
/* accum now contains tan(pi/2 - arg).
Use tan(arg) = 1.0 / tan(pi/2 - arg)
*/
accumulatoro.lsw = accumulatoro.midw = 0;
accumulatoro.msw = 0x80000000;
div_Xsig(&accumulatoro, &accum, &accum);
exponent = - exponent;
}
/* Transfer the result */
exponent += round_Xsig(&accum);
FPU_settag0(TAG_Valid);
significand(st0_ptr) = XSIG_LL(accum);
setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */
}