Bochs/bochs/iodev/pit.cc

860 lines
28 KiB
C++
Raw Normal View History

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS bx_pit.
// NOTES ON THE 8253/8254 PIT MODES
// MODE 0: Interrupt on Terminal Count
// ===================================
// Writing new count action:
// loaded upon next CLK pulse. counting doesn't start until GATE=1
// GATE 0..1 transition:
// ???
// GATE 1..0 transition:
// counter expiration action:
// wraps to FFFF
// * OUT rises until new count val or new control word for mode 0 written
// MODE 1: Programmable Monoflop
// =============================
// Writing new count action:
// not effective for current process
// GATE 0..1 transition:
// loads counter
// counter expiration action:
// wraps to FFFF
// NOTES:
// OUT rises until new count val or new control word for mode 0 written
// MODE 2: Rate Generator
// ======================
// Writing new count action:
// ???
// GATE 0..1 transition:
// loads initial count val and starts counting
// counter expiration action:
// reloads after count expires
// NOTES:
// * after control word & initial count val N loaded, PIT starts
// counting upon next CLK pulse.
// * when counter reaches 1, OUT drops to a low level, for one
// CLK cycle. (short peak pulse generated)
// * afterwards, the initial count val is automatically reloaded
// and the PIT restarts the same counting operation again.
// * distance of two OUT pulses is N CLK cycles long.
// * GATE=1 enables, GATE=0 disables counter.
// * if GATE drops to low level during counting operation and rises
// to high level later, PIT loads initial count value at the
// rise and starts counting.
// * PIT starts counting after last data byte written if GATE=1
// * if the output is low when the gate goes low, the output is
// immediately set high.
// MODE 3: Square Wave Generator
// =============================
// Writing new count action:
// ???
// GATE 0..1 transition:
// ???
// counter expiration action:
// reloads after count expires
// NOTES:
// * initially OUT at a high level
// * drop of GATE to a low level while OUT low, raises OUT to a high level
// * a rise from a low to a high level at GATE (trigger pulse),
// loads the counter with the initial count value and starts
// counting operation
// * a new count value supplied during the course of an active
// counting operation doesn't affect the current process.
// At the end of the current half cycle, the PIT loads the new value
// * if the GATE line goes low, count is temporarily halted until GATE
// returns high
// * if the OUT line is high when GATE goes low, OUT is forced low.
// ??? different for odd/even counts
// MODE 4: Software Triggered Pulse
// ================================
// Writing new count action:
// ???
// GATE 0..1 transition:
// ???
// counter expiration action:
// wraps to FFFF
// NOTES:
// MODE 5: Hardware Triggered Pulse
// ================================
// Writing new count action:
// ???
// GATE 0..1 transition:
// ???
// counter expiration action:
// wraps to FFFF
// NOTES:
#define BX_PIT_LATCH_MODE_LSB 10
#define BX_PIT_LATCH_MODE_MSB 11
#define BX_PIT_LATCH_MODE_16BIT 12
bx_pit_c bx_pit;
#if BX_USE_PIT_SMF
#define this (&bx_pit)
#endif
#ifdef OUT
# undef OUT
#endif
bx_pit_c::bx_pit_c( void )
{
setprefix("[PIT ]");
settype(PITLOG);
memset(&s, 0, sizeof(s));
/* 8254 PIT (Programmable Interval Timer) */
BX_PIT_THIS s.timer_handle[1] = BX_NULL_TIMER_HANDLE;
BX_PIT_THIS s.timer_handle[2] = BX_NULL_TIMER_HANDLE;
}
bx_pit_c::~bx_pit_c( void )
{
}
int
bx_pit_c::init( bx_devices_c *d )
{
BX_PIT_THIS devices = d;
BX_PIT_THIS devices->register_irq(0, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0040, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0041, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0042, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0043, "8254 PIT");
BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0061, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0040, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0041, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0042, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0043, "8254 PIT");
BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0061, "8254 PIT");
BX_PIT_THIS s.speaker_data_on = 0;
BX_PIT_THIS s.refresh_clock_div2 = 0;
BX_PIT_THIS s.timer[0].mode = 3; /* periodic rate generator */
BX_PIT_THIS s.timer[0].latch_mode = BX_PIT_LATCH_MODE_16BIT;
BX_PIT_THIS s.timer[0].input_latch_value = 0;
BX_PIT_THIS s.timer[0].input_latch_toggle = 0;
BX_PIT_THIS s.timer[0].output_latch_value = 0;
BX_PIT_THIS s.timer[0].output_latch_toggle = 0;
BX_PIT_THIS s.timer[0].output_latch_full = 0;
BX_PIT_THIS s.timer[0].counter_max = 0; /* 0xFFFF + 1 : (1193182 / 65535 = 18.2Hz) */
BX_PIT_THIS s.timer[0].counter = 0; /* 0xFFFF + 1 : (1193182 / 65535 = 18.2Hz) */
BX_PIT_THIS s.timer[0].bcd_mode = 0; /* binary counting mode */
BX_PIT_THIS s.timer[0].GATE = 1; /* GATE tied to + logic */
BX_PIT_THIS s.timer[0].OUT = 1;
BX_PIT_THIS s.timer[0].active = 0;
BX_PIT_THIS s.timer[1].mode = 3; /* periodic rate generator */
BX_PIT_THIS s.timer[1].latch_mode = BX_PIT_LATCH_MODE_16BIT;
BX_PIT_THIS s.timer[1].input_latch_value = 0;
BX_PIT_THIS s.timer[1].input_latch_toggle = 0;
BX_PIT_THIS s.timer[1].output_latch_value = 0;
BX_PIT_THIS s.timer[1].output_latch_toggle = 0;
BX_PIT_THIS s.timer[1].output_latch_full = 0;
BX_PIT_THIS s.timer[1].counter_max = 0; /* 0xFFFF + 1 : (1193182 / 65535 = 18.2Hz) */
BX_PIT_THIS s.timer[1].counter = 0; /* 0xFFFF + 1 : (1193182 / 65535 = 18.2Hz) */
BX_PIT_THIS s.timer[1].bcd_mode = 0; /* binary counting mode */
BX_PIT_THIS s.timer[1].GATE = 1; /* GATE tied to + logic */
BX_PIT_THIS s.timer[1].OUT = 1;
BX_PIT_THIS s.timer[1].active = 0;
BX_PIT_THIS s.timer[2].mode = 3; /* periodic rate generator */
BX_PIT_THIS s.timer[2].latch_mode = BX_PIT_LATCH_MODE_16BIT;
BX_PIT_THIS s.timer[2].input_latch_value = 0;
BX_PIT_THIS s.timer[2].input_latch_toggle = 0;
BX_PIT_THIS s.timer[2].output_latch_value = 0;
BX_PIT_THIS s.timer[2].output_latch_toggle = 0;
BX_PIT_THIS s.timer[2].output_latch_full = 0;
BX_PIT_THIS s.timer[2].counter_max = 0; /* 0xFFFF + 1 : (1193182 / 65535 = 18.2Hz) */
BX_PIT_THIS s.timer[2].counter = 0; /* 0xFFFF + 1 : (1193182 / 65535 = 18.2Hz) */
BX_PIT_THIS s.timer[2].bcd_mode = 0; /* binary counting mode */
BX_PIT_THIS s.timer[2].GATE = 0; /* timer2 gate controlled by port 61h bit 0 */
BX_PIT_THIS s.timer[2].OUT = 1;
BX_PIT_THIS s.timer[2].active = 0;
return(1);
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u
bx_pit_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_PIT_SMF
bx_pit_c *class_ptr = (bx_pit_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
Bit32u
bx_pit_c::read( Bit32u address, unsigned int io_len )
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PIT_SMF
if (io_len > 1)
BX_PANIC(("pit: io read from port %04x, len=%u", (unsigned) address,
(unsigned) io_len));
if (bx_dbg.pit)
BX_INFO(("pit: io read from port %04x", (unsigned) address));
switch (address) {
case 0x40: /* timer 0 - system ticks */
return( read_counter(0) );
break;
case 0x42: /* timer 2 read */
return( read_counter(2) );
break;
case 0x61:
/* AT, port 61h */
BX_PIT_THIS s.refresh_clock_div2 = !BX_PIT_THIS s.refresh_clock_div2;
return( (BX_PIT_THIS s.timer[2].OUT<<5) |
(BX_PIT_THIS s.refresh_clock_div2<<4) |
(BX_PIT_THIS s.speaker_data_on<<1) |
(BX_PIT_THIS s.timer[2].GATE) );
break;
default:
BX_PANIC(("pit: unsupported io read from port %04x", address));
}
return(0); /* keep compiler happy */
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void
bx_pit_c::write_handler(void *this_ptr, Bit32u address, Bit32u dvalue, unsigned io_len)
{
#if !BX_USE_PIT_SMF
bx_pit_c *class_ptr = (bx_pit_c *) this_ptr;
class_ptr->write(address, dvalue, io_len);
}
void
bx_pit_c::write( Bit32u address, Bit32u dvalue,
unsigned int io_len )
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PIT_SMF
Bit8u command, mode, bcd_mode;
Bit8u value;
value = (Bit8u ) dvalue;
if (io_len > 1)
BX_PANIC(("pit: io write to port %04x, len=%u", (unsigned) address,
(unsigned) io_len));
if (bx_dbg.pit)
BX_INFO(("pit: write to port %04x = %02x",
(unsigned) address, (unsigned) value));
switch (address) {
case 0x40: /* timer 0: write count register */
write_count_reg( value, 0 );
break;
case 0x41: /* timer 1: write count register */
write_count_reg( value, 1 );
break;
case 0x42: /* timer 2: write count register */
write_count_reg( value, 2 );
break;
case 0x43: /* timer 0-2 mode control */
/* |7 6 5 4|3 2 1|0|
* |-------|-----|-|
* |command|mode |bcd/binary|
*/
command = value >> 4;
mode = (value >> 1) & 0x07;
bcd_mode = value & 0x01;
#if 0
BX_INFO(("timer 0-2 mode control: comm:%02x mode:%02x bcd_mode:%u",
(unsigned) command, (unsigned) mode, (unsigned) bcd_mode));
#endif
if ( (mode > 5) || (command > 0x0e) )
BX_PANIC(("pit: outp(43h)=%02xh out of range", (unsigned) value));
if (bcd_mode)
BX_PANIC(("pit: outp(43h)=%02xh: bcd mode unhandled",
(unsigned) bcd_mode));
switch (command) {
case 0x0: /* timer 0: counter latch */
latch( 0 );
break;
case 0x1: /* timer 0: LSB mode */
case 0x2: /* timer 0: MSB mode */
BX_PANIC(("pit: outp(43h): command %02xh unhandled",
(unsigned) command));
break;
case 0x3: /* timer 0: 16-bit mode */
BX_PIT_THIS s.timer[0].mode = mode;
BX_PIT_THIS s.timer[0].latch_mode = BX_PIT_LATCH_MODE_16BIT;
BX_PIT_THIS s.timer[0].input_latch_value = 0;
BX_PIT_THIS s.timer[0].input_latch_toggle = 0;
BX_PIT_THIS s.timer[0].bcd_mode = bcd_mode;
if ( (mode!=3 && mode!=2 && mode!=0) || bcd_mode!=0 )
BX_PANIC(("pit: outp(43h): comm 3, mode %02x, bcd %02x unhandled",
(unsigned) mode, bcd_mode));
break;
case 0x4: /* timer 1: counter latch */
latch( 1 );
break;
case 0x5: /* timer 1: LSB mode */
case 0x6: /* timer 1: MSB mode */
BX_INFO(("pit: outp(43h): command %02xh unhandled (ignored)",
(unsigned) command));
break;
case 0x7: /* timer 1: 16-bit mode */
BX_PIT_THIS s.timer[1].mode = mode;
BX_PIT_THIS s.timer[1].latch_mode = BX_PIT_LATCH_MODE_16BIT;
BX_PIT_THIS s.timer[1].input_latch_value = 0;
BX_PIT_THIS s.timer[1].input_latch_toggle = 0;
BX_PIT_THIS s.timer[1].bcd_mode = bcd_mode;
if ( (mode!=3 && mode!=2 && mode!=0) || bcd_mode!=0 )
BX_PANIC(("pit: outp(43h): comm 7, mode %02x, bcd %02x unhandled",
(unsigned) mode, bcd_mode));
break;
case 0x8: /* timer 2: counter latch */
latch( 2 );
break;
case 0x9: /* timer 2: LSB mode */
case 0xa: /* timer 2: MSB mode */
BX_PANIC(("pit: outp(43h): command %02xh unhandled",
(unsigned) command));
break;
case 0xb: /* timer 2: 16-bit mode */
BX_PIT_THIS s.timer[2].mode = mode;
BX_PIT_THIS s.timer[2].latch_mode = BX_PIT_LATCH_MODE_16BIT;
BX_PIT_THIS s.timer[2].input_latch_value = 0;
BX_PIT_THIS s.timer[2].input_latch_toggle = 0;
BX_PIT_THIS s.timer[2].bcd_mode = bcd_mode;
if ( (mode!=3 && mode!=2 && mode!=0) || bcd_mode!=0 )
BX_PANIC(("pit: outp(43h): comm Bh, mode %02x, bcd %02x unhandled",
(unsigned) mode, bcd_mode));
break;
#if 0
case 0xd: /* general counter latch */
if (value & 0x08) /* select counter 2 */
latch( 2 );
if (value & 0x04) /* select counter 1 */
latch( 1 );
if (value & 0x02) /* select counter 0 */
latch( 0 );
break;
case 0xe: /* latch status of timers */
BX_PANIC(("pit: outp(43h): command %02xh unhandled",
(unsigned) command);
break;
#endif
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
BX_INFO(("pit: ignoring 8254 command %u", (unsigned) command));
break;
default: /* 0xc & 0xf */
BX_PANIC(("pit: outp(43h) command %1xh unhandled",
(unsigned) command));
break;
}
break;
case 0x61:
BX_PIT_THIS s.speaker_data_on = (value >> 1) & 0x01;
/*??? only on AT+ */
set_GATE(2, value & 0x01);
#if BX_CPU_LEVEL < 2
/* ??? XT: */
bx_kbd_port61h_write(value);
#endif
break;
default:
BX_PANIC(("pit: unsupported io write to port %04x = %02x",
(unsigned) address, (unsigned) value));
}
}
void
bx_pit_c::write_count_reg( Bit8u value, unsigned timerid )
{
Boolean xfer_complete;
switch ( BX_PIT_THIS s.timer[timerid].latch_mode ) {
case BX_PIT_LATCH_MODE_16BIT: /* write1=LSB, write2=MSB */
if (BX_PIT_THIS s.timer[timerid].input_latch_toggle==0) {
BX_PIT_THIS s.timer[timerid].input_latch_value = value;
BX_PIT_THIS s.timer[timerid].input_latch_toggle = 1;
xfer_complete = 0;
if (bx_dbg.pit)
BX_INFO(("pit: BX_PIT_THIS s.timer[timerid] write L = %02x", (unsigned) value));
}
else {
BX_PIT_THIS s.timer[timerid].input_latch_value |= (value << 8);
BX_PIT_THIS s.timer[timerid].input_latch_toggle = 0;
xfer_complete = 1;
if (bx_dbg.pit)
BX_INFO(("pit: BX_PIT_THIS s.timer[timerid] write H = %02x", (unsigned) value));
}
break;
case BX_PIT_LATCH_MODE_MSB: /* write1=MSB, LSB=0 */
BX_PIT_THIS s.timer[timerid].input_latch_value = (value << 8);
xfer_complete = 1;
if (bx_dbg.pit)
BX_INFO(("pit: BX_PIT_THIS s.timer[timerid] write H = %02x", (unsigned) value));
break;
case BX_PIT_LATCH_MODE_LSB: /* write1=LSB, MSB=0 */
BX_PIT_THIS s.timer[timerid].input_latch_value = value;
xfer_complete = 1;
if (bx_dbg.pit)
BX_INFO(("pit: BX_PIT_THIS s.timer[timerid] write L = %02x", (unsigned) value));
break;
default:
BX_PANIC(("write_count_reg: latch_mode unknown"));
xfer_complete = 0;
}
if (xfer_complete) {
BX_PIT_THIS s.timer[timerid].counter_max = BX_PIT_THIS s.timer[timerid].input_latch_value;
// reprogramming counter clears latch
BX_PIT_THIS s.timer[timerid].output_latch_full = 0;
// counter bounds
// mode minimum maximum
// 0 1 0
// 1 1 0
// 2 2 0
// 3 2 0
// 4 1 0
// 5 1 0
switch (BX_PIT_THIS s.timer[timerid].mode) {
case 0:
BX_PIT_THIS s.timer[timerid].counter = BX_PIT_THIS s.timer[timerid].counter_max;
BX_PIT_THIS s.timer[timerid].active = 1;
if (BX_PIT_THIS s.timer[timerid].GATE) {
BX_PIT_THIS s.timer[timerid].OUT = 0; // OUT pin starts low
start( timerid );
}
break;
case 1:
BX_PANIC(("pit:write_count_reg(%u): mode1 unsupported",
timerid));
break;
case 2:
if ( BX_PIT_THIS s.timer[timerid].counter_max == 1 )
BX_PANIC(("pit:write_count_reg(%u): mode %u counter_max=1",
timerid, (unsigned) BX_PIT_THIS s.timer[timerid].mode));
if ( BX_PIT_THIS s.timer[timerid].GATE && !BX_PIT_THIS s.timer[timerid].active ) {
// software triggered
BX_PIT_THIS s.timer[timerid].counter = BX_PIT_THIS s.timer[timerid].counter_max;
BX_PIT_THIS s.timer[timerid].active = 1;
BX_PIT_THIS s.timer[timerid].OUT = 1; // initially set high
start( timerid );
}
break;
case 3:
if ( BX_PIT_THIS s.timer[timerid].counter_max == 1 )
BX_PANIC(("pit:write_count_reg(%u): mode %u counter_max=1",
timerid, (unsigned) BX_PIT_THIS s.timer[timerid].mode));
BX_PIT_THIS s.timer[timerid].counter_max = BX_PIT_THIS s.timer[timerid].counter_max & 0xfffe;
if ( BX_PIT_THIS s.timer[timerid].GATE && !BX_PIT_THIS s.timer[timerid].active ) {
// software triggered
BX_PIT_THIS s.timer[timerid].counter = BX_PIT_THIS s.timer[timerid].counter_max;
BX_PIT_THIS s.timer[timerid].active = 1;
BX_PIT_THIS s.timer[timerid].OUT = 1; // initially set high
start( timerid );
}
break;
case 4:
BX_PANIC(("pit:write_count_reg(%u): mode4 unsupported",
timerid));
break;
case 5:
BX_PANIC(("pit:write_count_reg(%u): mode5 unsupported",
timerid));
break;
}
}
}
Bit8u
bx_pit_c::read_counter( unsigned timerid )
{
Bit16u counter_value;
Bit8u retval;
if (BX_PIT_THIS s.timer[timerid].output_latch_full) { /* latched read */
counter_value = BX_PIT_THIS s.timer[timerid].output_latch_value;
}
else { /* direct unlatched read */
counter_value = BX_PIT_THIS s.timer[timerid].counter;
BX_INFO(("CV=%04x", (unsigned) BX_PIT_THIS s.timer[timerid].counter));
}
switch (BX_PIT_THIS s.timer[timerid].latch_mode) {
case BX_PIT_LATCH_MODE_LSB:
retval = (Bit8u ) counter_value;
BX_PIT_THIS s.timer[timerid].output_latch_full = 0;
break;
case BX_PIT_LATCH_MODE_MSB:
retval = (Bit8u ) ( counter_value >> 8 );
BX_PIT_THIS s.timer[timerid].output_latch_full = 0;
break;
case BX_PIT_LATCH_MODE_16BIT:
if (BX_PIT_THIS s.timer[timerid].output_latch_toggle==0) { /* LSB 1st */
retval = (Bit8u ) counter_value;
}
else { /* MSB 2nd */
retval = (Bit8u ) ( counter_value >> 8 );
}
BX_PIT_THIS s.timer[timerid].output_latch_toggle = !BX_PIT_THIS s.timer[timerid].output_latch_toggle;
if (BX_PIT_THIS s.timer[timerid].output_latch_toggle == 0)
BX_PIT_THIS s.timer[timerid].output_latch_full = 0;
break;
default:
BX_PANIC(("pit: io read from port 40h: unknown latch mode"));
retval = 0; /* keep compiler happy */
}
return( retval );
}
void
bx_pit_c::latch( unsigned timerid )
{
/* subsequent counter latch commands are ignored until value read out */
if (BX_PIT_THIS s.timer[timerid].output_latch_full) {
BX_INFO(("pit: pit(%u) latch: output latch full, ignoring",
timerid));
return;
}
BX_PIT_THIS s.timer[timerid].output_latch_value = BX_PIT_THIS s.timer[timerid].counter;
if (bx_dbg.pit)
BX_INFO(("pit: latch_value = %lu", BX_PIT_THIS s.timer[timerid].output_latch_value));
BX_PIT_THIS s.timer[timerid].output_latch_toggle = 0;
BX_PIT_THIS s.timer[timerid].output_latch_full = 1;
}
void
bx_pit_c::set_GATE(unsigned pit_id, unsigned value)
{
// GATE's for Timer 0 & Timer 1 are tied high.
if (pit_id != 2)
BX_PANIC(("pit:set_GATE: pit_id != 2"));
value = (value > 0);
/* if no transition of GATE input line, then nothing to do */
if (value == BX_PIT_THIS s.timer[2].GATE)
return;
if (value) { /* PIT2: GATE transition from 0 to 1 */
BX_PIT_THIS s.timer[2].GATE = 1;
switch ( BX_PIT_THIS s.timer[2].mode ) {
case 0:
BX_PIT_THIS s.timer[2].counter = BX_PIT_THIS s.timer[2].counter_max;
if (BX_PIT_THIS s.timer[2].active) {
BX_PIT_THIS s.timer[2].OUT = 0;
}
start( 2 );
break;
case 2:
// begin counting, reload counter
BX_PIT_THIS s.timer[2].active = 1;
BX_PIT_THIS s.timer[2].OUT = 1;
BX_PIT_THIS s.timer[2].counter = BX_PIT_THIS s.timer[2].counter_max;
start( 2 );
break;
case 3:
// begin counting, reload counter
BX_PIT_THIS s.timer[2].active = 1;
BX_PIT_THIS s.timer[2].OUT = 1;
BX_PIT_THIS s.timer[2].counter = BX_PIT_THIS s.timer[2].counter_max;
start( 2 );
break;
case 1:
case 4:
case 5:
default:
BX_PANIC(("bx_pit_c::set_GATE: unhandled timer2 mode %u",
(unsigned) BX_PIT_THIS s.timer[2].mode));
}
}
else { // PIT2: GATE transition from 1 to 0, deactivate
BX_PIT_THIS s.timer[2].GATE = 0;
switch ( BX_PIT_THIS s.timer[2].mode ) {
case 0:
break;
case 2:
// 1) stops count, 2) OUT goes immediately high
BX_PIT_THIS s.timer[2].active = 0;
BX_PIT_THIS s.timer[2].OUT = 1;
break;
case 3:
// 1) stops count, 2) OUT goes immediately high
BX_PIT_THIS s.timer[2].active = 0;
BX_PIT_THIS s.timer[2].OUT = 1;
break;
case 1:
case 4:
case 5:
default:
BX_PANIC(("bx_pit_c::set_GATE: unhandled timer2 mode %u",
(unsigned) BX_PIT_THIS s.timer[2].mode));
}
}
}
void
bx_pit_c::start(unsigned timerid)
{
unsigned long period_hz;
if (BX_PIT_THIS s.timer[timerid].counter_max == 0x0000) {
period_hz = 1193182 / 65536;
}
else {
period_hz = 1193182 / BX_PIT_THIS s.timer[timerid].counter_max;
}
BX_INFO(("timer%u period set to %lu hz", timerid, period_hz));
switch (BX_PIT_THIS s.timer[timerid].mode) {
case 0: /* single timeout */
break;
case 1: /* retriggerable one-shot */
BX_PANIC(("start: mode %u unhandled",
(unsigned) BX_PIT_THIS s.timer[timerid].mode));
break;
case 2: /* rate generator */
break;
case 3: /* square wave mode */
break;
case 4: /* software triggered strobe */
BX_PANIC(("start: mode %u unhandled",
(unsigned) BX_PIT_THIS s.timer[timerid].mode));
break;
case 5: /* hardware retriggerable strobe */
BX_PANIC(("start: mode %u unhandled",
(unsigned) BX_PIT_THIS s.timer[timerid].mode));
break;
default:
BX_PANIC(("start: timer%u has bad mode",
(unsigned) BX_PIT_THIS s.timer[timerid].mode));
}
}
int
bx_pit_c::SaveState( class state_file *fd )
{
fd->write_check ("8254 start");
fd->write (&BX_PIT_THIS s, sizeof (BX_PIT_THIS s));
fd->write_check ("8254 end");
return(0);
}
int
bx_pit_c::LoadState( class state_file *fd )
{
fd->read_check ("8254 start");
fd->read (&BX_PIT_THIS s, sizeof (BX_PIT_THIS s));
fd->read_check ("8254 end");
return(0);
}
#if 0
void
bx_kbd_port61h_write(Bit8u value)
{
// PcError("KBD_PORT61H_WRITE(): not implemented yet");
UNUSED( value );
}
#endif
Boolean
bx_pit_c::periodic( Bit32u usec_delta )
{
Boolean prev_timer0_out;
prev_timer0_out = BX_PIT_THIS s.timer[0].OUT;
for (unsigned i = 0; i < 3; i++) {
// is timer enabled and active?
if ( BX_PIT_THIS s.timer[i].GATE && BX_PIT_THIS s.timer[i].active ) {
switch ( BX_PIT_THIS s.timer[i].mode ) {
case 0: // Mode 0: Single Timeout
// wraps after count expires
if ( BX_PIT_THIS s.timer[i].counter == 0 ) {
// counter previously expired, wrap counter
BX_PIT_THIS s.timer[i].counter = 0xffff;
}
else if ( usec_delta >= BX_PIT_THIS s.timer[i].counter ) {
// counter expired
BX_PIT_THIS s.timer[i].counter = 0;
BX_PIT_THIS s.timer[i].OUT = 1;
}
else {
// decrement counter by elapsed useconds
BX_PIT_THIS s.timer[i].counter -= (Bit16u ) usec_delta;
}
break;
case 1: // Mode 1: Retriggerable One-Shot
// wraps after count expires
BX_PANIC(("bx_pit_c::periodic: bad mode: timer[%u], mode %u",
i, (unsigned) BX_PIT_THIS s.timer[i].mode));
break;
case 2: // Mode 2: Rate Generator
// reloads after count expires
// OUT is low when counter=1, high otherwise
// min count=2, max count=0
if ( BX_PIT_THIS s.timer[i].counter == 0 ) {
// max counter val, just wrap
BX_PIT_THIS s.timer[i].counter = 0xffff;
BX_PIT_THIS s.timer[i].OUT = 1;
}
else if ( BX_PIT_THIS s.timer[i].counter == 1 ) {
// counter previously expired, reload
BX_PIT_THIS s.timer[i].counter = BX_PIT_THIS s.timer[i].counter_max;
BX_PIT_THIS s.timer[i].OUT = 1;
}
else if ( (BX_PIT_THIS s.timer[i].counter == 2) ||
(usec_delta >= (Bit32u(BX_PIT_THIS s.timer[i].counter) - 1)) ) {
// in either case, counter will reach 1
BX_PIT_THIS s.timer[i].counter = 1;
BX_PIT_THIS s.timer[i].OUT = 0;
}
else {
// decrement counter by elapsed useconds
BX_PIT_THIS s.timer[i].counter -= (Bit16u ) usec_delta;
}
break;
case 3: // Mode 3: Square Wave Mode
// reloads after count expires
// min count=2, max count=0
if ( BX_PIT_THIS s.timer[i].counter == 0 ) {
// max count, dec by 2
BX_PIT_THIS s.timer[i].counter = 0xfffe;
}
else if ( (BX_PIT_THIS s.timer[i].counter <= 2) ||
( (usec_delta*2) >= BX_PIT_THIS s.timer[i].counter ) ) {
// counter expired, reload
BX_PIT_THIS s.timer[i].counter = BX_PIT_THIS s.timer[i].counter_max;
BX_PIT_THIS s.timer[i].OUT = !BX_PIT_THIS s.timer[i].OUT;
//BX_INFO(("CV: reload t%u to %04x", (unsigned) i, (unsigned)
// BX_PIT_THIS s.timer[i].counter));
}
else {
// decrement counter by elapsed useconds
BX_PIT_THIS s.timer[i].counter -= (Bit16u ) ( 2*usec_delta );
//BX_INFO(("CV: dec count to %04x",
// (unsigned) BX_PIT_THIS s.timer[i].counter));
}
break;
case 4: // Mode 4: Software Triggered Strobe
// wraps after count expires
BX_PANIC(("bx_pit_c::periodic: bad mode: timer[%u], mode %u",
i, (unsigned) BX_PIT_THIS s.timer[i].mode));
break;
case 5: // Mode 5: Hardware Retriggerable Strobe
// wraps after count expires
BX_PANIC(("bx_pit_c::periodic: bad mode: timer[%u], mode %u",
i, (unsigned) BX_PIT_THIS s.timer[i].mode));
break;
default:
BX_PANIC(("bx_pit_c::periodic: bad mode: timer[%u], mode %u",
i, (unsigned) BX_PIT_THIS s.timer[i].mode));
break;
} // switch ( BX_PIT_THIS s.tim...
} // if ( BX_PIT_THIS s.timer[i]...
} // for (unsigned i...
// see if there's a rising edge on timer0's output to trigger an IRQ0.
if ( (prev_timer0_out==0) && (BX_PIT_THIS s.timer[0].OUT==1) )
return(1); // request IRQ 0
else
return(0);
}