kuroko/vm.c
2021-01-03 09:49:19 +09:00

2139 lines
73 KiB
C

#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <errno.h>
#include <sys/stat.h>
#include "vm.h"
#include "debug.h"
#include "memory.h"
#include "compiler.h"
#include "object.h"
#include "table.h"
#define S(c) (krk_copyString(c,sizeof(c)-1))
/* This is macro'd to krk_vm for namespacing reasons. */
KrkVM vm;
static KrkValue run();
static KrkValue krk_isinstance(int argc, KrkValue argv[]);
/* Embedded script for extensions to builtin-ins; see builtins.c/builtins.krk */
extern const char _builtins_src[];
/**
* Reset the stack pointers, frame, upvalue list,
* clear the exception flag and current exception;
* happens on startup (twice) and after an exception.
*/
static void resetStack() {
vm.stackTop = vm.stack;
vm.frameCount = 0;
vm.openUpvalues = NULL;
vm.flags &= ~KRK_HAS_EXCEPTION;
vm.currentException = NONE_VAL();
}
#ifdef ENABLE_TRACING
/**
* When tracing is enabled, we will present the elements on the stack with
* a safe printer; the format of values printed by krk_printValueSafe will
* look different from those printed by printValue, but they guarantee that
* the VM will never be called to produce a string, which would result in
* a nasty infinite recursion if we did it while trying to trace the VM!
*/
static void dumpStack(CallFrame * frame) {
fprintf(stderr, " | ");
size_t i = 0;
for (KrkValue * slot = vm.stack; slot < vm.stackTop; slot++) {
fprintf(stderr, "[ ");
if (i == frame->slots) fprintf(stderr, "*");
krk_printValueSafe(stderr, *slot);
fprintf(stderr, " ]");
i++;
}
if (i == frame->slots) {
fprintf(stderr, " * ");
}
fprintf(stderr, "\n");
}
#endif
/**
* Display a traceback by working through call frames.
* Called when no exception handler was available and
* an exception was thrown. If there the exception value
* is not None, it will also be printed using safe methods.
*/
static void dumpTraceback() {
fprintf(stderr, "Traceback, most recent first, %d call frame%s:\n", (int)vm.frameCount, vm.frameCount == 1 ? "" : "s");
for (size_t i = 0; i <= vm.frameCount - 1; i++) {
CallFrame * frame = &vm.frames[i];
KrkFunction * function = frame->closure->function;
size_t instruction = frame->ip - function->chunk.code - 1;
fprintf(stderr, " File \"%s\", line %d, in %s\n",
(function->chunk.filename ? function->chunk.filename->chars : "?"),
(int)krk_lineNumber(&function->chunk, instruction),
(function->name ? function->name->chars : "(unnamed)"));
}
if (!krk_valuesEqual(vm.currentException,NONE_VAL())) {
if (IS_STRING(vm.currentException)) {
/* Make sure strings are printed without quotes */
fprintf(stderr, "%s", AS_CSTRING(vm.currentException));
} else if (AS_BOOLEAN(krk_isinstance(2, (KrkValue[]){vm.currentException, OBJECT_VAL(vm.exceptions.baseException)}))) {
/* ErrorClass: arg... */
fprintf(stderr, "%s: ", AS_INSTANCE(vm.currentException)->_class->name->chars);
KrkValue exceptionArg;
krk_tableGet(&AS_INSTANCE(vm.currentException)->fields, OBJECT_VAL(S("arg")), &exceptionArg);
if (IS_STRING(exceptionArg)) {
/* Make sure strings are printed without quotes */
fprintf(stderr, "%s", AS_CSTRING(exceptionArg));
} else {
krk_printValueSafe(stderr, exceptionArg);
}
} else {
/* Whatever, just print it. */
krk_printValueSafe(stderr, vm.currentException);
}
fprintf(stderr, "\n");
}
}
/**
* Raise an exception. Creates an exception object of the requested type
* and formats a message string to attach to it. Exception classes are
* found in vm.exceptions and are initialized on startup.
*/
void krk_runtimeError(KrkClass * type, const char * fmt, ...) {
char buf[1024] = {0};
va_list args;
va_start(args, fmt);
size_t len = vsnprintf(buf, 1024, fmt, args);
va_end(args);
vm.flags |= KRK_HAS_EXCEPTION;
/* Try to allocate an instance of __builtins__. */
KrkInstance * exceptionObject = krk_newInstance(type);
krk_push(OBJECT_VAL(exceptionObject));
KrkString * strArg = S("arg");
krk_push(OBJECT_VAL(strArg));
KrkString * strVal = krk_copyString(buf, len);
krk_push(OBJECT_VAL(strVal));
krk_tableSet(&exceptionObject->fields, OBJECT_VAL(strArg), OBJECT_VAL(strVal));
krk_pop();
krk_pop();
krk_pop();
vm.currentException = OBJECT_VAL(exceptionObject);
}
/**
* Push a value onto the stack, and grow the stack if necessary.
* Note that growing the stack can involve the stack _moving_, so
* do not rely on the memory offset of a stack value if you expect
* the stack to grow - eg. if you are calling into managed code
* to do anything, or if you are pushing anything.
*/
inline void krk_push(KrkValue value) {
if ((size_t)(vm.stackTop - vm.stack) + 1 > vm.stackSize) {
size_t old = vm.stackSize;
size_t old_offset = vm.stackTop - vm.stack;
vm.stackSize = GROW_CAPACITY(old);
vm.stack = GROW_ARRAY(KrkValue, vm.stack, old, vm.stackSize);
vm.stackTop = vm.stack + old_offset;
}
*vm.stackTop = value;
vm.stackTop++;
}
/**
* Pop the top of the stack. We never reclaim space used by the stack,
* so anything that is popped can be safely pushed back on without
* the stack moving, and you an also generally rely on a popped item
* still being where it was if you don't allocate anything in between;
* the repl relies on this it expects to be able to get the last
* pushed value and display it (if it's not None).
*/
KrkValue krk_pop() {
vm.stackTop--;
if (vm.stackTop < vm.stack) {
fprintf(stderr, "Fatal error: stack underflow detected in VM, issuing breakpoint.\n");
__asm__ ("int $3");
return NONE_VAL();
}
return *vm.stackTop;
}
/* Read a value `distance` units from the top of the stack without poping it. */
inline KrkValue krk_peek(int distance) {
return vm.stackTop[-1 - distance];
}
/* Exchange the value `distance` units down from the top of the stack with
* the value at the top of the stack. */
void krk_swap(int distance) {
KrkValue top = vm.stackTop[-1];
vm.stackTop[-1] = vm.stackTop[-1 - distance];
vm.stackTop[-1 - distance] = top;
}
/**
* Bind a native function to the given table (eg. vm.globals, or _class->methods)
* GC safe: pushes allocated values.
*/
void krk_defineNative(KrkTable * table, const char * name, NativeFn function) {
int functionType = 0;
if (*name == '.') {
name++;
functionType = 1;
}
if (*name == ':') {
name++;
functionType = 2;
}
KrkNative * func = krk_newNative(function, name, functionType);
krk_push(OBJECT_VAL(func));
krk_push(OBJECT_VAL(krk_copyString(name, (int)strlen(name))));
krk_tableSet(table, krk_peek(0), krk_peek(1));
krk_pop();
krk_pop();
}
/***************
* Collections *
****************/
/**
* dict.__init__()
*/
static KrkValue _dict_init(int argc, KrkValue argv[]) {
KrkClass * dict = krk_newClass(NULL);
krk_push(OBJECT_VAL(dict));
krk_tableSet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_DICT_INT], OBJECT_VAL(dict));
krk_tableSet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_INREPR], INTEGER_VAL(0));
krk_pop();
return argv[0];
}
/**
* dict.__get__(key)
*/
static KrkValue _dict_get(int argc, KrkValue argv[]) {
if (argc < 2) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number of arguments");
return NONE_VAL();
}
KrkValue _dict_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_DICT_INT], &_dict_internal);
KrkValue out;
if (!krk_tableGet(AS_DICT(_dict_internal), argv[1], &out)) {
krk_runtimeError(vm.exceptions.keyError, "key error");
}
return out;
}
/**
* dict.__set__(key, value)
*/
static KrkValue _dict_set(int argc, KrkValue argv[]) {
if (argc < 3) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number of arguments");
return NONE_VAL();
}
KrkValue _dict_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_DICT_INT], &_dict_internal);
krk_tableSet(AS_DICT(_dict_internal), argv[1], argv[2]);
return NONE_VAL();
}
/**
* dict.__len__()
*/
static KrkValue _dict_len(int argc, KrkValue argv[]) {
if (argc < 1) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number of arguments");
return NONE_VAL();
}
KrkValue _dict_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_DICT_INT], &_dict_internal);
return INTEGER_VAL(AS_DICT(_dict_internal)->count);
}
/**
* dict.__contains__()
*/
static KrkValue _dict_contains(int argc, KrkValue argv[]) {
KrkValue _unused;
KrkValue _dict_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_DICT_INT], &_dict_internal);
return BOOLEAN_VAL(krk_tableGet(AS_DICT(_dict_internal), argv[1], &_unused));
}
/**
* dict.capacity()
*/
static KrkValue _dict_capacity(int argc, KrkValue argv[]) {
if (argc < 1) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number of arguments");
return NONE_VAL();
}
KrkValue _dict_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_DICT_INT], &_dict_internal);
return INTEGER_VAL(AS_DICT(_dict_internal)->capacity);
}
/**
* dict._key_at_index(internalIndex)
*/
static KrkValue _dict_key_at_index(int argc, KrkValue argv[]) {
if (argc < 2) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number of arguments");
return NONE_VAL();
}
if (!IS_INTEGER(argv[1])) {
krk_runtimeError(vm.exceptions.typeError, "expected integer index but got %s", krk_typeName(argv[1]));
return NONE_VAL();
}
int i = AS_INTEGER(argv[1]);
KrkValue _dict_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_DICT_INT], &_dict_internal);
if (i < 0 || i > (int)AS_DICT(_dict_internal)->capacity) {
krk_runtimeError(vm.exceptions.indexError, "hash table index is out of range: %d", i);
return NONE_VAL();
}
KrkTableEntry entry = AS_DICT(_dict_internal)->entries[i];
return entry.key;
}
/**
* list.__init__()
*/
static KrkValue _list_init(int argc, KrkValue argv[]) {
KrkFunction * list = krk_newFunction(NULL);
krk_push(OBJECT_VAL(list));
krk_tableSet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_LIST_INT], OBJECT_VAL(list));
krk_tableSet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_INREPR], INTEGER_VAL(0));
krk_pop();
return argv[0];
}
/**
* list.__get__(index)
*/
static KrkValue _list_get(int argc, KrkValue argv[]) {
if (argc < 2 || !IS_INTEGER(argv[1])) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number or type of arguments");
return NONE_VAL();
}
KrkValue _list_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_LIST_INT], &_list_internal);
int index = AS_INTEGER(argv[1]);
if (index < 0 || index >= (int)AS_LIST(_list_internal)->count) {
krk_runtimeError(vm.exceptions.indexError, "index is out of range: %d", index);
return NONE_VAL();
}
return AS_LIST(_list_internal)->values[index];
}
/**
* list.__set__(index, value)
*/
static KrkValue _list_set(int argc, KrkValue argv[]) {
if (argc < 3 || !IS_INTEGER(argv[1])) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number or type of arguments");
return NONE_VAL();
}
KrkValue _list_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_LIST_INT], &_list_internal);
int index = AS_INTEGER(argv[1]);
if (index < 0 || index >= (int)AS_LIST(_list_internal)->count) {
krk_runtimeError(vm.exceptions.indexError, "index is out of range: %d", index);
return NONE_VAL();
}
AS_LIST(_list_internal)->values[index] = argv[2];
return NONE_VAL();
}
/**
* list.append(value)
*/
static KrkValue _list_append(int argc, KrkValue argv[]) {
if (argc < 2) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number or type of arguments");
return NONE_VAL();
}
KrkValue _list_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_LIST_INT], &_list_internal);
krk_writeValueArray(AS_LIST(_list_internal), argv[1]);
return NONE_VAL();
}
/**
* list.__len__
*/
static KrkValue _list_len(int argc, KrkValue argv[]) {
if (argc < 1) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number or type of arguments");
return NONE_VAL();
}
KrkValue _list_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_LIST_INT], &_list_internal);
return INTEGER_VAL(AS_LIST(_list_internal)->count);
}
/**
* list.__contains__
*/
static KrkValue _list_contains(int argc, KrkValue argv[]) {
if (argc < 2) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number or type of arguments");
return NONE_VAL();
}
KrkValue _list_internal;
krk_tableGet(&AS_INSTANCE(argv[0])->fields, vm.specialMethodNames[METHOD_LIST_INT], &_list_internal);
for (size_t i = 0; i < AS_LIST(_list_internal)->count; ++i) {
if (krk_valuesEqual(argv[1], AS_LIST(_list_internal)->values[i])) return BOOLEAN_VAL(1);
}
return BOOLEAN_VAL(0);
}
/**
* Run the VM until it returns from the current call frame;
* used by native methods to call into managed methods.
* Returns the value returned by the RETURN instruction that
* exited the call frame. Should be nestable so a managed method
* can call a native method can call a managed can call a native
* and so on (hopefully).
*/
KrkValue krk_runNext(void) {
size_t oldExit = vm.exitOnFrame;
vm.exitOnFrame = vm.frameCount - 1;
KrkValue result = run();
vm.exitOnFrame = oldExit;
return result;
}
/**
* Exposed method called to produce lists from [expr,...] sequences in managed code.
* Presented in the global namespace as listOf(...)
*/
static KrkValue krk_list_of(int argc, KrkValue argv[]) {
KrkValue Class;
krk_tableGet(&vm.globals,OBJECT_VAL(S("list")), &Class);
KrkInstance * outList = krk_newInstance(AS_CLASS(Class));
krk_push(OBJECT_VAL(outList));
KrkFunction * listContents = krk_newFunction(NULL);
krk_push(OBJECT_VAL(listContents));
krk_tableSet(&outList->fields, vm.specialMethodNames[METHOD_LIST_INT], OBJECT_VAL(listContents));
krk_tableSet(&outList->fields, vm.specialMethodNames[METHOD_INREPR], INTEGER_VAL(0));
for (int ind = 0; ind < argc; ++ind) {
krk_writeValueArray(&listContents->chunk.constants, argv[ind]);
}
KrkValue out = OBJECT_VAL(outList);
krk_pop(); /* listContents */
krk_pop(); /* outList */
return out;
}
/**
* Exposed method called to produce dictionaries from {expr: expr, ...} sequences in managed code.
* Presented in the global namespace as dictOf(...). Expects arguments as key,value,key,value...
*/
KrkValue krk_dict_of(int argc, KrkValue argv[]) {
if (argc % 2 != 0) {
krk_runtimeError(vm.exceptions.argumentError, "Expected even number of arguments to dictOf");
return NONE_VAL();
}
KrkValue Class;
krk_tableGet(&vm.globals,OBJECT_VAL(S("dict")), &Class);
KrkInstance * outDict = krk_newInstance(AS_CLASS(Class));
krk_push(OBJECT_VAL(outDict));
KrkClass * dictContents = krk_newClass(NULL);
krk_push(OBJECT_VAL(dictContents));
krk_tableSet(&outDict->fields, vm.specialMethodNames[METHOD_DICT_INT], OBJECT_VAL(dictContents));
krk_tableSet(&outDict->fields, vm.specialMethodNames[METHOD_INREPR], INTEGER_VAL(0));
for (int ind = 0; ind < argc; ind += 2) {
krk_tableSet(&dictContents->methods, argv[ind], argv[ind+1]);
}
KrkValue out = OBJECT_VAL(outDict);
krk_pop(); /* dictContents */
krk_pop(); /* outDict */
return out;
}
/**
* __builtins__.set_tracing(mode)
*/
static KrkValue krk_set_tracing(int argc, KrkValue argv[]) {
if (argc < 1) return NONE_VAL();
#ifdef DEBUG
else if (!strcmp(AS_CSTRING(argv[0]),"tracing=1")) vm.flags |= KRK_ENABLE_TRACING;
else if (!strcmp(AS_CSTRING(argv[0]),"disassembly=1")) vm.flags |= KRK_ENABLE_DISASSEMBLY;
else if (!strcmp(AS_CSTRING(argv[0]),"scantracing=1")) vm.flags |= KRK_ENABLE_SCAN_TRACING;
else if (!strcmp(AS_CSTRING(argv[0]),"stressgc=1")) vm.flags |= KRK_ENABLE_STRESS_GC;
else if (!strcmp(AS_CSTRING(argv[0]),"tracing=0")) vm.flags &= ~KRK_ENABLE_TRACING;
else if (!strcmp(AS_CSTRING(argv[0]),"disassembly=0")) vm.flags &= ~KRK_ENABLE_DISASSEMBLY;
else if (!strcmp(AS_CSTRING(argv[0]),"scantracing=0")) vm.flags &= ~KRK_ENABLE_SCAN_TRACING;
else if (!strcmp(AS_CSTRING(argv[0]),"stressgc=0")) vm.flags &= ~KRK_ENABLE_STRESS_GC;
return BOOLEAN_VAL(1);
#else
krk_runtimeError(vm.exceptions.typeError,"Debugging is not enabled in this build.");
return NONE_VAL();
#endif
}
/**
* object.__dir__()
*/
static KrkValue krk_dirObject(int argc, KrkValue argv[]) {
if (argc != 1) {
krk_runtimeError(vm.exceptions.argumentError, "wrong number of arguments or bad type, got %d\n", argc);
return NONE_VAL();
}
/* Create a new list instance */
KrkValue Class;
krk_tableGet(&vm.globals,OBJECT_VAL(S("list")), &Class);
KrkInstance * outList = krk_newInstance(AS_CLASS(Class));
krk_push(OBJECT_VAL(outList));
KrkFunction * listContents = krk_newFunction(NULL);
krk_push(OBJECT_VAL(listContents));
krk_tableSet(&outList->fields, vm.specialMethodNames[METHOD_LIST_INT], OBJECT_VAL(listContents));
if (IS_INSTANCE(argv[0])) {
/* Obtain self-reference */
KrkInstance * self = AS_INSTANCE(argv[0]);
/* First add each method of the class */
for (size_t i = 0; i < self->_class->methods.capacity; ++i) {
if (self->_class->methods.entries[i].key.type != VAL_NONE) {
krk_writeValueArray(&listContents->chunk.constants,
self->_class->methods.entries[i].key);
}
}
/* Then add each field of the instance */
for (size_t i = 0; i < self->fields.capacity; ++i) {
if (self->fields.entries[i].key.type != VAL_NONE) {
krk_writeValueArray(&listContents->chunk.constants,
self->fields.entries[i].key);
}
}
} else {
KrkClass * type = AS_CLASS(krk_typeOf(1, (KrkValue[]){argv[0]}));
for (size_t i = 0; i < type->methods.capacity; ++i) {
if (type->methods.entries[i].key.type != VAL_NONE) {
krk_writeValueArray(&listContents->chunk.constants,
type->methods.entries[i].key);
}
}
}
/* Prepare output value */
KrkValue out = OBJECT_VAL(outList);
krk_pop();
krk_pop();
return out;
}
/**
* type(obj)
*
* For basic types (non-instances), finds the associated pseudo-class;
* for instances, returns the associated real class.
*
* Called often in native code as krk_typeOf(1,(KrkValue[]){value})
*/
KrkValue krk_typeOf(int argc, KrkValue argv[]) {
switch (argv[0].type) {
case VAL_INTEGER:
return OBJECT_VAL(vm.baseClasses.intClass);
case VAL_FLOATING:
return OBJECT_VAL(vm.baseClasses.floatClass);
case VAL_BOOLEAN:
return OBJECT_VAL(vm.baseClasses.boolClass);
case VAL_NONE:
return OBJECT_VAL(vm.baseClasses.noneTypeClass);
case VAL_OBJECT:
switch (AS_OBJECT(argv[0])->type) {
case OBJ_CLASS:
return OBJECT_VAL(vm.baseClasses.typeClass);
case OBJ_NATIVE:
case OBJ_FUNCTION:
case OBJ_CLOSURE:
return OBJECT_VAL(vm.baseClasses.functionClass);
case OBJ_BOUND_METHOD:
return OBJECT_VAL(vm.baseClasses.methodClass);
case OBJ_STRING:
return OBJECT_VAL(vm.baseClasses.strClass);
case OBJ_INSTANCE:
return OBJECT_VAL(AS_INSTANCE(argv[0])->_class);
default:
return OBJECT_VAL(vm.objectClass);
} break;
default:
return OBJECT_VAL(vm.objectClass);
}
}
/* Class.__base__ */
static KrkValue krk_baseOfClass(int argc, KrkValue argv[]) {
return AS_CLASS(argv[0])->base ? OBJECT_VAL(AS_CLASS(argv[0])->base) : NONE_VAL();
}
/* Class.__name */
static KrkValue krk_nameOfClass(int argc, KrkValue argv[]) {
return AS_CLASS(argv[0])->name ? OBJECT_VAL(AS_CLASS(argv[0])->name) : NONE_VAL();
}
/* Class.__file__ */
static KrkValue krk_fileOfClass(int argc, KrkValue argv[]) {
return AS_CLASS(argv[0])->filename ? OBJECT_VAL(AS_CLASS(argv[0])->filename) : NONE_VAL();
}
/* Class.__doc__ */
static KrkValue krk_docOfClass(int argc, KrkValue argv[]) {
return AS_CLASS(argv[0])->docstring ? OBJECT_VAL(AS_CLASS(argv[0])->docstring) : NONE_VAL();
}
/* Class.__str__() (and Class.__repr__) */
static KrkValue _class_to_str(int argc, KrkValue argv[]) {
char * tmp = malloc(sizeof("<type ''>") + AS_CLASS(argv[0])->name->length);
size_t l = sprintf(tmp, "<type '%s'>", AS_CLASS(argv[0])->name->chars);
KrkString * out = krk_copyString(tmp,l);
free(tmp);
return OBJECT_VAL(out);
}
/**
* isinstance(obj,Class)
*
* Searches from type(obj) up the inheritence tree to see if obj
* is an eventual descendant of Class. Unless someone made a new
* type and didn't inherit from object(), everything is eventually
* an object - even basic types like INTEGERs and FLOATINGs.
*/
static KrkValue krk_isinstance(int argc, KrkValue argv[]) {
if (argc != 2) {
krk_runtimeError(vm.exceptions.argumentError, "isinstance expects 2 arguments, got %d", argc);
return NONE_VAL();
}
if (!IS_CLASS(argv[1])) {
krk_runtimeError(vm.exceptions.typeError, "isinstance() arg 2 must be class");
return NONE_VAL();
}
KrkValue obj_type = krk_typeOf(1, (KrkValue[]){argv[0]});
KrkClass * obj_class = AS_CLASS(obj_type);
KrkClass * _class = AS_CLASS(argv[1]);
while (obj_class) {
if (obj_class == _class) return BOOLEAN_VAL(1);
obj_class = obj_class->base;
}
return BOOLEAN_VAL(0);
}
/**
* globals()
*
* Returns a dict of names -> values for all the globals.
*/
static KrkValue krk_globals(int argc, KrkValue argv[]) {
/* Make a new empty dict */
KrkValue dict = krk_dict_of(0, NULL);
krk_push(dict);
/* Get its internal table */
KrkValue _dict_internal;
krk_tableGet(&AS_INSTANCE(dict)->fields, vm.specialMethodNames[METHOD_DICT_INT], &_dict_internal);
/* Copy the globals table into it */
krk_tableAddAll(&vm.globals, &AS_CLASS(_dict_internal)->methods);
krk_pop();
return dict;
}
static int checkArgumentCount(KrkClosure * closure, int argCount) {
int minArgs = closure->function->requiredArgs;
int maxArgs = minArgs + closure->function->defaultArgs;
if (argCount < minArgs || argCount > maxArgs) {
krk_runtimeError(vm.exceptions.argumentError, "%s() takes %s %d argument%s (%d given)",
closure->function->name ? closure->function->name->chars : "<unnamed function>",
(minArgs == maxArgs) ? "exactly" : (argCount < minArgs ? "at least" : "at most"),
(argCount < minArgs) ? minArgs : maxArgs,
((argCount < minArgs) ? minArgs : maxArgs) == 1 ? "" : "s",
argCount);
return 0;
}
return 1;
}
/**
* Call a managed method.
* Takes care of argument count checking, default argument filling,
* sets up a new call frame, and then resumes the VM to run the function.
*
* Methods are called with their receivers on the stack as the first argument.
* Non-methods are called with themselves on the stack before the first argument.
* `extra` is passed by `callValue` to tell us which case we have, and thus
* where we need to restore the stack to when we return from this call.
*/
static int call(KrkClosure * closure, int argCount, int extra) {
if (!checkArgumentCount(closure, argCount)) {
return 0;
}
while (argCount < (closure->function->requiredArgs + closure->function->defaultArgs)) {
krk_push(NONE_VAL());
argCount++;
}
if (vm.frameCount == FRAMES_MAX) {
krk_runtimeError(vm.exceptions.baseException, "Too many call frames.");
return 0;
}
CallFrame * frame = &vm.frames[vm.frameCount++];
frame->closure = closure;
frame->ip = closure->function->chunk.code;
frame->slots = (vm.stackTop - argCount) - vm.stack;
frame->outSlots = (vm.stackTop - argCount - extra) - vm.stack;
return 1;
}
/**
* Call a callable.
*
* For native methods, the result is available "immediately" upon return
* and the return value is set to 2 to indicate this - just krk_pop()
* to get the result. If an exception is thrown during a native method call,
* callValue will return 0 and the VM should be allowed to handle the exception.
*
* For managed code, the VM needs to be resumed. Returns 1 to indicate this.
* If you want a result in a native method, call `krk_runNext()` and the
* result will be returned directly from that function.
*
* Works for closures, classes, natives, and bound methods.
* If called with a non-callable, raises TypeError; this includes
* attempts to call a Class with no __init__ while using arguments.
*
* If callValue returns 0, the VM should already be in the exception state
* and it is not necessary to raise another exception.
*
* TODO: Instances with __call__ method.
*/
int krk_callValue(KrkValue callee, int argCount, int extra) {
if (IS_OBJECT(callee)) {
switch (OBJECT_TYPE(callee)) {
case OBJ_CLOSURE:
return call(AS_CLOSURE(callee), argCount, extra);
case OBJ_NATIVE: {
NativeFn native = AS_NATIVE(callee);
KrkValue * stackCopy = malloc(argCount * sizeof(KrkValue));
memcpy(stackCopy, vm.stackTop - argCount, argCount * sizeof(KrkValue));
KrkValue result = native(argCount, stackCopy);
free(stackCopy);
if (vm.stackTop == vm.stack) {
/* Runtime error returned from native method */
return 0;
}
vm.stackTop -= argCount + extra;
krk_push(result);
return 2;
}
case OBJ_CLASS: {
KrkClass * _class = AS_CLASS(callee);
vm.stackTop[-argCount - 1] = OBJECT_VAL(krk_newInstance(_class));
KrkValue initializer;
if (krk_tableGet(&_class->methods, vm.specialMethodNames[METHOD_INIT], &initializer)) {
return krk_callValue(initializer, argCount + 1, 0);
} else if (argCount != 0) {
krk_runtimeError(vm.exceptions.attributeError, "Class does not have an __init__ but arguments were passed to initializer: %d\n", argCount);
return 0;
}
return 1;
}
case OBJ_BOUND_METHOD: {
KrkBoundMethod * bound = AS_BOUND_METHOD(callee);
vm.stackTop[-argCount - 1] = bound->receiver;
if (!bound->method) {
krk_runtimeError(vm.exceptions.argumentError, "Attempted to call a method binding with no attached callable (did you forget to return something from a method decorator?)");
return 0;
}
return krk_callValue(OBJECT_VAL(bound->method), argCount + 1, 0);
}
default:
break;
}
}
krk_runtimeError(vm.exceptions.typeError, "Attempted to call non-callable type: %s", krk_typeName(callee));
return 0;
}
/**
* Attach a method call to its callee and return a BoundMethod.
* Works for managed and native method calls.
*/
int krk_bindMethod(KrkClass * _class, KrkString * name) {
KrkValue method, out;
if (!krk_tableGet(&_class->methods, OBJECT_VAL(name), &method)) return 0;
if (IS_NATIVE(method) && ((KrkNative*)AS_OBJECT(method))->isMethod == 2) {
out = AS_NATIVE(method)(1, (KrkValue[]){krk_peek(0)});
} else {
out = OBJECT_VAL(krk_newBoundMethod(krk_peek(0), AS_OBJECT(method)));
}
krk_pop();
krk_push(out);
return 1;
}
/**
* Capture upvalues and mark them as open. Called upon closure creation to
* mark stack slots used by a function.
*/
static KrkUpvalue * captureUpvalue(int index) {
KrkUpvalue * prevUpvalue = NULL;
KrkUpvalue * upvalue = vm.openUpvalues;
while (upvalue != NULL && upvalue->location > index) {
prevUpvalue = upvalue;
upvalue = upvalue->next;
}
if (upvalue != NULL && upvalue->location == index) {
return upvalue;
}
KrkUpvalue * createdUpvalue = krk_newUpvalue(index);
createdUpvalue->next = upvalue;
if (prevUpvalue == NULL) {
vm.openUpvalues = createdUpvalue;
} else {
prevUpvalue->next = createdUpvalue;
}
return createdUpvalue;
}
#define UPVALUE_LOCATION(upvalue) (upvalue->location == -1 ? &upvalue->closed : &vm.stack[upvalue->location])
/**
* Close upvalues by moving them out of the stack and into the heap.
* Their location attribute is set to -1 to indicate they now live on the heap.
*/
static void closeUpvalues(int last) {
while (vm.openUpvalues != NULL && vm.openUpvalues->location >= last) {
KrkUpvalue * upvalue = vm.openUpvalues;
upvalue->closed = vm.stack[upvalue->location];
upvalue->location = -1;
vm.openUpvalues = upvalue->next;
}
}
/**
* Attach an object to a table.
*
* Generally used to attach classes or objects to the globals table, or to
* a native module's export object.
*/
void krk_attachNamedObject(KrkTable * table, const char name[], KrkObj * obj) {
krk_push(OBJECT_VAL(krk_copyString(name,strlen(name))));
krk_push(OBJECT_VAL(obj));
krk_tableSet(table, krk_peek(1), krk_peek(0));
krk_pop();
krk_pop();
}
/**
* Same as above, but the object has already been wrapped in a value.
*/
void krk_attachNamedValue(KrkTable * table, const char name[], KrkValue obj) {
krk_push(OBJECT_VAL(krk_copyString(name,strlen(name))));
krk_push(obj);
krk_tableSet(table, krk_peek(1), krk_peek(0));
krk_pop();
krk_pop();
}
/**
* Exception.__init__(arg)
*/
static KrkValue krk_initException(int argc, KrkValue argv[]) {
KrkInstance * self = AS_INSTANCE(argv[0]);
if (argc > 0) {
krk_attachNamedValue(&self->fields, "arg", argv[1]);
} else {
krk_attachNamedValue(&self->fields, "arg", OBJECT_VAL(S("")));
}
return argv[0];
}
#define ADD_BASE_CLASS(obj, name, baseClass) do { \
obj = krk_newClass(S(name)); \
krk_attachNamedObject(&vm.builtins->fields, name, (KrkObj*)obj); \
obj->base = baseClass; \
krk_tableAddAll(&baseClass->methods, &obj->methods); \
} while (0)
#define ADD_EXCEPTION_CLASS(obj, name, baseClass) do { \
obj = krk_newClass(S(name)); \
krk_attachNamedObject(&vm.globals, name, (KrkObj*)obj); \
obj->base = baseClass; \
krk_tableAddAll(&baseClass->methods, &obj->methods); \
} while (0)
/** native method that returns its first arg; useful for int(INT), etc. */
static KrkValue _noop(int argc, KrkValue argv[]) {
return argv[0];
}
/* float.__int__() */
static KrkValue _floating_to_int(int argc, KrkValue argv[]) {
return INTEGER_VAL((long)AS_FLOATING(argv[0]));
}
/* int.__float__() */
static KrkValue _int_to_floating(int argc, KrkValue argv[]) {
return FLOATING_VAL((double)AS_INTEGER(argv[0]));
}
/* int.__chr__() */
static KrkValue _int_to_char(int argc, KrkValue argv[]) {
char tmp[2] = {AS_INTEGER(argv[0]), 0};
return OBJECT_VAL(krk_copyString(tmp,1));
}
/* str.__len__() */
static KrkValue _string_length(int argc, KrkValue argv[]) {
if (argc != 1) {
return NONE_VAL();
}
if (!IS_STRING(argv[0])) {
return NONE_VAL();
}
return INTEGER_VAL(AS_STRING(argv[0])->length);
}
/* str.__set__(ind,val) - this is invalid, throw a nicer error than 'field does not exist'. */
static KrkValue _strings_are_immutable(int argc, KrkValue argv[]) {
krk_runtimeError(vm.exceptions.typeError, "Strings are not mutable.");
return NONE_VAL();
}
/**
* str.__getslice__(start,end)
*
* Unlike in Python, we actually handle negative values here rather than
* somewhere else? I'm not even sure where Python does do it, but a quick
* says not if you call __getslice__ directly...
*/
static KrkValue _string_get_slice(int argc, KrkValue argv[]) {
if (argc < 3) { /* 3 because first is us */
krk_runtimeError(vm.exceptions.argumentError, "slice: expected 2 arguments, got %d", argc-1);
return NONE_VAL();
}
if (!IS_STRING(argv[0]) ||
!(IS_INTEGER(argv[1]) || IS_NONE(argv[1])) ||
!(IS_INTEGER(argv[2]) || IS_NONE(argv[2]))) {
krk_runtimeError(vm.exceptions.typeError, "slice: expected two integer arguments");
return NONE_VAL();
}
/* bounds check */
KrkString * me = AS_STRING(argv[0]);
int start = IS_NONE(argv[1]) ? 0 : AS_INTEGER(argv[1]);
int end = IS_NONE(argv[2]) ? (int)me->length : AS_INTEGER(argv[2]);
if (start < 0) start = me->length + start;
if (start < 0) start = 0;
if (end < 0) end = me->length + end;
if (start > (int)me->length) start = me->length;
if (end > (int)me->length) end = me->length;
if (end < start) end = start;
int len = end - start;
return OBJECT_VAL(krk_copyString(me->chars + start, len));
}
/* str.__int__(base=10) */
static KrkValue _string_to_int(int argc, KrkValue argv[]) {
if (argc < 1 || argc > 2 || !IS_STRING(argv[0])) return NONE_VAL();
int base = (argc == 1) ? 10 : (int)AS_INTEGER(argv[1]);
char * start = AS_CSTRING(argv[0]);
/* These special cases for hexadecimal, binary, octal values. */
if (start[0] == '0' && (start[1] == 'x' || start[1] == 'X')) {
base = 16;
start += 2;
} else if (start[0] == '0' && (start[1] == 'b' || start[1] == 'B')) {
base = 2;
start += 2;
} else if (start[0] == '0' && (start[1] == 'o' || start[1] == 'O')) {
base = 8;
start += 2;
}
long value = strtol(start, NULL, base);
return INTEGER_VAL(value);
}
/* str.__float__() */
static KrkValue _string_to_float(int argc, KrkValue argv[]) {
if (argc != 1 || !IS_STRING(argv[0])) return NONE_VAL();
return FLOATING_VAL(strtod(AS_CSTRING(argv[0]),NULL));
}
/* str.__get__(index) */
static KrkValue _string_get(int argc, KrkValue argv[]) {
if (argc != 2) {
krk_runtimeError(vm.exceptions.argumentError, "Wrong number of arguments to String.__get__");
return NONE_VAL();
}
if (!IS_STRING(argv[0])) {
krk_runtimeError(vm.exceptions.typeError, "First argument to __get__ must be String");
return NONE_VAL();
}
if (!IS_INTEGER(argv[1])) {
krk_runtimeError(vm.exceptions.typeError, "String can not indexed by %s", krk_typeName(argv[1]));
return NONE_VAL();
}
int asInt = AS_INTEGER(argv[1]);
if (asInt < 0) asInt += (int)AS_STRING(argv[0])->length;
if (asInt < 0 || asInt >= (int)AS_STRING(argv[0])->length) {
krk_runtimeError(vm.exceptions.indexError, "String index out of range: %d", asInt);
return NONE_VAL();
}
return INTEGER_VAL(AS_CSTRING(argv[0])[asInt]);
}
/* function.__doc__ */
static KrkValue _closure_get_doc(int argc, KrkValue argv[]) {
if (!IS_CLOSURE(argv[0])) return NONE_VAL();
return AS_CLOSURE(argv[0])->function->docstring ? OBJECT_VAL(AS_CLOSURE(argv[0])->function->docstring) : NONE_VAL();
}
/* method.__doc__ */
static KrkValue _bound_get_doc(int argc, KrkValue argv[]) {
KrkBoundMethod * boundMethod = AS_BOUND_METHOD(argv[0]);
return _closure_get_doc(1, (KrkValue[]){OBJECT_VAL(boundMethod->method)});
}
/* Check for and return the name of a native function as a string object */
static KrkValue nativeFunctionName(KrkValue func) {
const char * string = ((KrkNative*)AS_OBJECT(func))->name;
size_t len = strlen(string);
return OBJECT_VAL(krk_copyString(string,len));
}
/* function.__name__ */
static KrkValue _closure_get_name(int argc, KrkValue argv[]) {
if (!IS_CLOSURE(argv[0])) return nativeFunctionName(argv[0]);
return AS_CLOSURE(argv[0])->function->name ? OBJECT_VAL(AS_CLOSURE(argv[0])->function->name) : OBJECT_VAL(S(""));
}
/* method.__name__ */
static KrkValue _bound_get_name(int argc, KrkValue argv[]) {
KrkBoundMethod * boundMethod = AS_BOUND_METHOD(argv[0]);
return _closure_get_name(1, (KrkValue[]){OBJECT_VAL(boundMethod->method)});
}
/* function.__str__ / function.__repr__ */
static KrkValue _closure_str(int argc, KrkValue argv[]) {
KrkValue s = _closure_get_name(argc, argv);
krk_push(s);
size_t len = AS_STRING(s)->length + sizeof("<function >");
char * tmp = malloc(len);
sprintf(tmp, "<function %s>", AS_CSTRING(s));
s = OBJECT_VAL(krk_copyString(tmp,len-1));
free(tmp);
krk_pop();
return s;
}
/* method.__str__ / method.__repr__ */
static KrkValue _bound_str(int argc, KrkValue argv[]) {
KrkValue s = _bound_get_name(argc, argv);
krk_push(s);
size_t len = AS_STRING(s)->length + sizeof("<method >");
char * tmp = malloc(len);
sprintf(tmp, "<method %s>", AS_CSTRING(s));
s = OBJECT_VAL(krk_copyString(tmp,len-1));
free(tmp);
krk_pop();
return s;
}
/* function.__file__ */
static KrkValue _closure_get_file(int argc, KrkValue argv[]) {
if (!IS_CLOSURE(argv[0])) return OBJECT_VAL(S("<builtin>"));
return AS_CLOSURE(argv[0])->function->chunk.filename ? OBJECT_VAL(AS_CLOSURE(argv[0])->function->chunk.filename) : OBJECT_VAL(S(""));
}
/* method.__file__ */
static KrkValue _bound_get_file(int argc, KrkValue argv[]) {
KrkBoundMethod * boundMethod = AS_BOUND_METHOD(argv[0]);
return _closure_get_file(1, (KrkValue[]){OBJECT_VAL(boundMethod->method)});
}
/**
* object.__str__() / object.__repr__()
*
* Base method for all objects to implement __str__ and __repr__.
* Generally converts to <instance of [TYPE]> and for actual object
* types (functions, classes, instances, strings...) also adds the pointer
* address of the object on the heap.
*
* Since all types have at least a pseudo-class that should eventually
* inheret from object() and this is object.__str__ / object.__repr__,
* all types should have a string representation available through
* those methods.
*/
static KrkValue _strBase(int argc, KrkValue argv[]) {
KrkClass * type = AS_CLASS(krk_typeOf(1,(KrkValue[]){argv[0]}));
size_t len = sizeof("<instance of . at 0x1234567812345678>") + type->name->length;
char * tmp = malloc(len);
if (IS_OBJECT(argv[0])) {
sprintf(tmp, "<instance of %s at %p>", type->name->chars, (void*)AS_OBJECT(argv[0]));
} else {
sprintf(tmp, "<instance of %s>", type->name->chars);
}
KrkValue out = OBJECT_VAL(krk_copyString(tmp, strlen(tmp)));
free(tmp);
return out;
}
/**
* str.__repr__()
*
* Strings are special because __str__ should do nothing but __repr__
* should escape characters like quotes.
*/
static KrkValue _repr_str(int argc, KrkValue argv[]) {
char * str = malloc(3 + AS_STRING(argv[0])->length * 2);
char * tmp = str;
*(tmp++) = '"';
for (char * c = AS_CSTRING(argv[0]); *c; ++c) {
switch (*c) {
/* XXX: Other non-printables should probably be escaped as well. */
case '\n': *(tmp++) = '\\'; *(tmp++) = 'n'; break;
case '\r': *(tmp++) = '\\'; *(tmp++) = 'r'; break;
case '\t': *(tmp++) = '\\'; *(tmp++) = 't'; break;
case '"': *(tmp++) = '\\'; *(tmp++) = '"'; break;
case 27: *(tmp++) = '\\'; *(tmp++) = '['; break;
default: *(tmp++) = *c; break;
}
}
*(tmp++) = '"';
*(tmp++) = '\0';
KrkString * out = krk_copyString(str, tmp-str-1);
free(str);
return OBJECT_VAL(out);
}
/**
* int.__str__()
*
* Unlike Python, dot accessors are perfectly valid and work as you'd expect
* them to in Kuroko, so we can do 123.__str__() and get the string "123".
*
* TODO: Implement format options here so we can get different widths,
* hex/octal/binary representations, etc.
*/
static KrkValue _int_to_str(int argc, KrkValue argv[]) {
char tmp[100];
size_t l = sprintf(tmp, "%ld", (long)AS_INTEGER(argv[0]));
return OBJECT_VAL(krk_copyString(tmp, l));
}
/**
* float.__str__()
*/
static KrkValue _float_to_str(int argc, KrkValue argv[]) {
char tmp[100];
size_t l = sprintf(tmp, "%g", AS_FLOATING(argv[0]));
return OBJECT_VAL(krk_copyString(tmp, l));
}
/**
* bool.__str__() -> "True" or "False"
*/
static KrkValue _bool_to_str(int argc, KrkValue argv[]) {
return OBJECT_VAL((AS_BOOLEAN(argv[0]) ? S("True") : S("False")));
}
/**
* None.__str__() -> "None"
*/
static KrkValue _none_to_str(int argc, KrkValue argv[]) {
return OBJECT_VAL(S("None"));
}
void krk_initVM(int flags) {
vm.flags = flags;
KRK_PAUSE_GC();
resetStack();
vm.objects = NULL;
vm.bytesAllocated = 0;
vm.nextGC = 1024 * 1024;
vm.grayCount = 0;
vm.grayCapacity = 0;
vm.grayStack = NULL;
krk_initTable(&vm.globals);
krk_initTable(&vm.strings);
memset(vm.specialMethodNames,0,sizeof(vm.specialMethodNames));
/* To make lookup faster, store these so we can don't have to keep boxing
* and unboxing, copying/hashing etc. */
vm.specialMethodNames[METHOD_INIT] = OBJECT_VAL(S("__init__"));
vm.specialMethodNames[METHOD_STR] = OBJECT_VAL(S("__str__"));
vm.specialMethodNames[METHOD_REPR] = OBJECT_VAL(S("__repr__"));
vm.specialMethodNames[METHOD_GET] = OBJECT_VAL(S("__get__"));
vm.specialMethodNames[METHOD_SET] = OBJECT_VAL(S("__set__"));
vm.specialMethodNames[METHOD_CLASS]= OBJECT_VAL(S("__class__"));
vm.specialMethodNames[METHOD_NAME] = OBJECT_VAL(S("__name__"));
vm.specialMethodNames[METHOD_FILE] = OBJECT_VAL(S("__file__"));
vm.specialMethodNames[METHOD_INT] = OBJECT_VAL(S("__int__"));
vm.specialMethodNames[METHOD_CHR] = OBJECT_VAL(S("__chr__"));
vm.specialMethodNames[METHOD_FLOAT]= OBJECT_VAL(S("__float__"));
vm.specialMethodNames[METHOD_LEN] = OBJECT_VAL(S("__len__"));
vm.specialMethodNames[METHOD_DOC] = OBJECT_VAL(S("__doc__"));
vm.specialMethodNames[METHOD_BASE] = OBJECT_VAL(S("__base__"));
vm.specialMethodNames[METHOD_GETSLICE] = OBJECT_VAL(S("__getslice__"));
vm.specialMethodNames[METHOD_LIST_INT] = OBJECT_VAL(S("__list"));
vm.specialMethodNames[METHOD_DICT_INT] = OBJECT_VAL(S("__dict"));
vm.specialMethodNames[METHOD_INREPR] = OBJECT_VAL(S("__inrepr"));
/* Create built-in class `object` */
vm.objectClass = krk_newClass(S("object"));
krk_attachNamedObject(&vm.globals, "object", (KrkObj*)vm.objectClass);
krk_defineNative(&vm.objectClass->methods, ":__class__", krk_typeOf);
krk_defineNative(&vm.objectClass->methods, ".__dir__", krk_dirObject);
krk_defineNative(&vm.objectClass->methods, ".__str__", _strBase);
krk_defineNative(&vm.objectClass->methods, ".__repr__", _strBase); /* Override if necesary */
/* Build a __builtins__ namespace for some extra functions. */
vm.builtins = krk_newInstance(vm.objectClass);
krk_attachNamedObject(&vm.globals, "__builtins__", (KrkObj*)vm.builtins);
/* Add exception classes */
ADD_EXCEPTION_CLASS(vm.exceptions.baseException, "Exception", vm.objectClass);
/* base exception class gets an init that takes an optional string */
krk_defineNative(&vm.exceptions.baseException->methods, ".__init__", krk_initException);
ADD_EXCEPTION_CLASS(vm.exceptions.typeError, "TypeError", vm.exceptions.baseException);
ADD_EXCEPTION_CLASS(vm.exceptions.argumentError, "ArgumentError", vm.exceptions.baseException);
ADD_EXCEPTION_CLASS(vm.exceptions.indexError, "IndexError", vm.exceptions.baseException);
ADD_EXCEPTION_CLASS(vm.exceptions.keyError, "KeyError", vm.exceptions.baseException);
ADD_EXCEPTION_CLASS(vm.exceptions.attributeError, "AttributeError", vm.exceptions.baseException);
ADD_EXCEPTION_CLASS(vm.exceptions.nameError, "NameError", vm.exceptions.baseException);
ADD_EXCEPTION_CLASS(vm.exceptions.importError, "ImportError", vm.exceptions.baseException);
ADD_EXCEPTION_CLASS(vm.exceptions.ioError, "IOError", vm.exceptions.baseException);
/* Build classes for basic types */
ADD_BASE_CLASS(vm.baseClasses.typeClass, "type", vm.objectClass);
krk_defineNative(&vm.baseClasses.typeClass->methods, ":__base__", krk_baseOfClass);
krk_defineNative(&vm.baseClasses.typeClass->methods, ":__file__", krk_fileOfClass);
krk_defineNative(&vm.baseClasses.typeClass->methods, ":__doc__", krk_docOfClass);
krk_defineNative(&vm.baseClasses.typeClass->methods, ":__name__", krk_nameOfClass);
krk_defineNative(&vm.baseClasses.typeClass->methods, ".__str__", _class_to_str);
krk_defineNative(&vm.baseClasses.typeClass->methods, ".__repr__", _class_to_str);
ADD_BASE_CLASS(vm.baseClasses.intClass, "int", vm.objectClass);
krk_defineNative(&vm.baseClasses.intClass->methods, ".__int__", _noop);
krk_defineNative(&vm.baseClasses.intClass->methods, ".__float__", _int_to_floating);
krk_defineNative(&vm.baseClasses.intClass->methods, ".__chr__", _int_to_char);
krk_defineNative(&vm.baseClasses.intClass->methods, ".__str__", _int_to_str);
krk_defineNative(&vm.baseClasses.intClass->methods, ".__repr__", _int_to_str);
ADD_BASE_CLASS(vm.baseClasses.floatClass, "float", vm.objectClass);
krk_defineNative(&vm.baseClasses.floatClass->methods, ".__int__", _floating_to_int);
krk_defineNative(&vm.baseClasses.floatClass->methods, ".__float__", _noop);
krk_defineNative(&vm.baseClasses.floatClass->methods, ".__str__", _float_to_str);
krk_defineNative(&vm.baseClasses.floatClass->methods, ".__repr__", _float_to_str);
ADD_BASE_CLASS(vm.baseClasses.boolClass, "bool", vm.objectClass);
krk_defineNative(&vm.baseClasses.boolClass->methods, ".__str__", _bool_to_str);
krk_defineNative(&vm.baseClasses.boolClass->methods, ".__repr__", _bool_to_str);
ADD_BASE_CLASS(vm.baseClasses.noneTypeClass, "NoneType", vm.objectClass);
krk_defineNative(&vm.baseClasses.noneTypeClass->methods, ".__str__", _none_to_str);
krk_defineNative(&vm.baseClasses.noneTypeClass->methods, ".__repr__", _none_to_str);
ADD_BASE_CLASS(vm.baseClasses.strClass, "str", vm.objectClass);
krk_defineNative(&vm.baseClasses.strClass->methods, ".__str__", _noop);
krk_defineNative(&vm.baseClasses.strClass->methods, ".__repr__", _repr_str);
krk_defineNative(&vm.baseClasses.strClass->methods, ".__len__", _string_length);
krk_defineNative(&vm.baseClasses.strClass->methods, ".__get__", _string_get);
krk_defineNative(&vm.baseClasses.strClass->methods, ".__set__", _strings_are_immutable);
krk_defineNative(&vm.baseClasses.strClass->methods, ".__int__", _string_to_int);
krk_defineNative(&vm.baseClasses.strClass->methods, ".__float__", _string_to_float);
krk_defineNative(&vm.baseClasses.strClass->methods, ".__getslice__", _string_get_slice);
ADD_BASE_CLASS(vm.baseClasses.functionClass, "function", vm.objectClass);
krk_defineNative(&vm.baseClasses.functionClass->methods, ".__str__", _closure_str);
krk_defineNative(&vm.baseClasses.functionClass->methods, ".__repr__", _closure_str);
krk_defineNative(&vm.baseClasses.functionClass->methods, ".__doc__", _closure_get_doc);
krk_defineNative(&vm.baseClasses.functionClass->methods, ":__name__", _closure_get_name);
krk_defineNative(&vm.baseClasses.functionClass->methods, ":__file__", _closure_get_file);
ADD_BASE_CLASS(vm.baseClasses.methodClass, "method", vm.objectClass);
krk_defineNative(&vm.baseClasses.methodClass->methods, ".__str__", _bound_str);
krk_defineNative(&vm.baseClasses.methodClass->methods, ".__repr__", _bound_str);
krk_defineNative(&vm.baseClasses.methodClass->methods, ".__doc__", _bound_get_doc);
krk_defineNative(&vm.baseClasses.methodClass->methods, ":__name__", _bound_get_name);
krk_defineNative(&vm.baseClasses.methodClass->methods, ":__file__", _bound_get_file);
/* Build global builtin functions. */
krk_defineNative(&vm.globals, "listOf", krk_list_of);
krk_defineNative(&vm.globals, "dictOf", krk_dict_of);
krk_defineNative(&vm.globals, "isinstance", krk_isinstance);
krk_defineNative(&vm.globals, "globals", krk_globals);
krk_defineNative(&vm.globals, "type", krk_typeOf);
/* __builtins__.set_tracing is namespaced */
krk_defineNative(&vm.builtins->fields, "set_tracing", krk_set_tracing);
/**
* Read the managed code builtins module, which contains the base
* definitions for collections so we can pull them into the global
* namespace and attach their __init__/__get__/__set__, etc. methods.
*
* A significant subset of the VM's functionality is lost without
* these classes being available, but it should still work to some degree.
*/
KrkValue builtinsModule = krk_interpret(_builtins_src,1,"__builtins__","__builtins__");
if (!IS_OBJECT(builtinsModule)) {
/* ... hence, this is a warning and not a complete failure. */
fprintf(stderr, "VM startup failure: Failed to load __builtins__ module.\n");
} else {
KrkValue val;
/* Now we can attach the native initializers and getters/setters to
* the list and dict types by pulling them out of the global namespace,
* as they were exported by builtins.krk */
krk_tableGet(&vm.globals,OBJECT_VAL(S("list")),&val);
KrkClass * _class = AS_CLASS(val);
krk_defineNative(&_class->methods, ".__init__", _list_init);
krk_defineNative(&_class->methods, ".__get__", _list_get);
krk_defineNative(&_class->methods, ".__set__", _list_set);
krk_defineNative(&_class->methods, ".__len__", _list_len);
krk_defineNative(&_class->methods, ".__contains__", _list_contains);
krk_defineNative(&_class->methods, ".append", _list_append);
krk_tableGet(&vm.globals,OBJECT_VAL(S("dict")),&val);
_class = AS_CLASS(val);
krk_defineNative(&_class->methods, ".__init__", _dict_init);
krk_defineNative(&_class->methods, ".__get__", _dict_get);
krk_defineNative(&_class->methods, ".__set__", _dict_set);
krk_defineNative(&_class->methods, ".__len__", _dict_len);
krk_defineNative(&_class->methods, ".__contains__", _dict_contains);
/* These are used to for dict.keys() to create the iterators. */
krk_defineNative(&_class->methods, ".capacity", _dict_capacity);
krk_defineNative(&_class->methods, "._key_at_index", _dict_key_at_index);
}
/* The VM is now ready to start executing code. */
resetStack();
KRK_RESUME_GC();
}
/**
* Reclaim resources used by the VM.
*/
void krk_freeVM() {
krk_freeTable(&vm.globals);
krk_freeTable(&vm.strings);
krk_freeTable(&vm.modules);
memset(vm.specialMethodNames,0,sizeof(vm.specialMethodNames));
krk_freeObjects();
FREE_ARRAY(size_t, vm.stack, vm.stackSize);
}
/**
* Inverse of truthiness.
*
* None, False, and 0 are all "falsey", meaning they will trip JUMP_IF_FALSE
* instructions / not trip JUMP_IF_TRUE instructions.
*
* Or in more managed code terms, `if None`, `if False`, and `if 0` are all
* going to take the else branch.
*/
static int isFalsey(KrkValue value) {
return IS_NONE(value) || (IS_BOOLEAN(value) && !AS_BOOLEAN(value)) ||
(IS_INTEGER(value) && !AS_INTEGER(value));
/* Objects in the future: */
/* IS_STRING && length == 0; IS_ARRAY && length == 0; IS_INSTANCE && __bool__ returns 0... */
}
/**
* Internal type(value).__name__ call for use in debugging methods and
* creating exception strings.
*/
const char * krk_typeName(KrkValue value) {
return AS_CLASS(krk_typeOf(1, (KrkValue[]){value}))->name->chars;
}
/**
* Basic arithmetic and string functions follow.
*
* BIG TODO: All of these need corresponding __methods__ so that classes
* can override / implement them.
* __add__, __sub__, __mult__, __div__,
* __or__, __and__, __xor__, __lshift__, __rshift__, __remainder__?
*/
#define MAKE_BIN_OP(name,operator) \
static KrkValue name (KrkValue a, KrkValue b) { \
if (IS_INTEGER(a) && IS_INTEGER(b)) return INTEGER_VAL(AS_INTEGER(a) operator AS_INTEGER(b)); \
if (IS_FLOATING(a)) { \
if (IS_INTEGER(b)) return FLOATING_VAL(AS_FLOATING(a) operator (double)AS_INTEGER(b)); \
else if (IS_FLOATING(b)) return FLOATING_VAL(AS_FLOATING(a) operator AS_FLOATING(b)); \
} else if (IS_FLOATING(b)) { \
if (IS_INTEGER(a)) return FLOATING_VAL((double)AS_INTEGER(a) operator AS_FLOATING(b)); \
} \
krk_runtimeError(vm.exceptions.typeError, "Incompatible types for binary operand %s: %s and %s", #operator, krk_typeName(a), krk_typeName(b)); \
return NONE_VAL(); \
}
MAKE_BIN_OP(add,+)
MAKE_BIN_OP(subtract,-)
MAKE_BIN_OP(multiply,*)
MAKE_BIN_OP(divide,/)
/* Bit ops are invalid on doubles in C, so we can't use the same set of macros for them;
* they should be invalid in Kuroko as well. */
#define MAKE_BIT_OP(name,operator) \
static KrkValue name (KrkValue a, KrkValue b) { \
if (IS_INTEGER(a) && IS_INTEGER(b)) return INTEGER_VAL(AS_INTEGER(a) operator AS_INTEGER(b)); \
krk_runtimeError(vm.exceptions.typeError, "Incompatible types for binary operand %s: %s and %s", #operator, krk_typeName(a), krk_typeName(b)); \
return NONE_VAL(); \
}
MAKE_BIT_OP(bitor,|)
MAKE_BIT_OP(bitxor,^)
MAKE_BIT_OP(bitand,&)
MAKE_BIT_OP(shiftleft,<<)
MAKE_BIT_OP(shiftright,>>)
MAKE_BIT_OP(modulo,%) /* not a bit op, but doesn't work on floating point */
#define MAKE_COMPARATOR(name, operator) \
static KrkValue name (KrkValue a, KrkValue b) { \
if (IS_INTEGER(a) && IS_INTEGER(b)) return BOOLEAN_VAL(AS_INTEGER(a) operator AS_INTEGER(b)); \
if (IS_FLOATING(a)) { \
if (IS_INTEGER(b)) return BOOLEAN_VAL(AS_FLOATING(a) operator AS_INTEGER(b)); \
else if (IS_FLOATING(b)) return BOOLEAN_VAL(AS_FLOATING(a) operator AS_FLOATING(b)); \
} else if (IS_FLOATING(b)) { \
if (IS_INTEGER(a)) return BOOLEAN_VAL(AS_INTEGER(a) operator AS_INTEGER(b)); \
} \
krk_runtimeError(vm.exceptions.typeError, "Can not compare types %s and %s", krk_typeName(a), krk_typeName(b)); \
return NONE_VAL(); \
}
MAKE_COMPARATOR(less, <)
MAKE_COMPARATOR(greater, >)
static void concatenate(const char * a, const char * b, size_t al, size_t bl) {
size_t length = al + bl;
char * chars = ALLOCATE(char, length + 1);
memcpy(chars, a, al);
memcpy(chars + al, b, bl);
chars[length] = '\0';
KrkString * result = krk_takeString(chars, length);
krk_pop();
krk_pop();
krk_push(OBJECT_VAL(result));
}
static void addObjects() {
KrkValue _b = krk_peek(0);
KrkValue _a = krk_peek(1);
if (IS_STRING(_a)) {
KrkString * a = AS_STRING(_a);
if (IS_STRING(_b)) {
KrkString * b = AS_STRING(_b);
concatenate(a->chars,b->chars,a->length,b->length);
return;
}
if (krk_bindMethod(AS_CLASS(krk_typeOf(1,(KrkValue[]){_b})), AS_STRING(vm.specialMethodNames[METHOD_STR]))) {
KrkValue result;
int t = krk_callValue(krk_peek(0), 0, 1);
if (t == 2) {
result = krk_pop();
} else if (t == 1) {
result = krk_runNext();
} else {
krk_runtimeError(vm.exceptions.typeError, "__str__ failed to call str on %s", krk_typeName(_b));
return;
}
if (!IS_STRING(result)) {
krk_runtimeError(vm.exceptions.typeError, "__str__ produced something that wasn't a string: %s", krk_typeName(result));
return;
}
krk_push(result);
concatenate(a->chars,AS_STRING(result)->chars,a->length,AS_STRING(result)->length);
return;
} else {
char tmp[256] = {0};
sprintf(tmp, "<%s>", krk_typeName(_b));
concatenate(a->chars,tmp,a->length,strlen(tmp));
}
} else {
krk_runtimeError(vm.exceptions.typeError, "Can not concatenate types %s and %s", krk_typeName(_a), krk_typeName(_b)); \
}
}
/**
* At the end of each instruction cycle, we check the exception flag to see
* if an error was raised during execution. If there is an exception, this
* function is called to scan up the stack to see if there is an exception
* handler value. Handlers live on the stack at the point where it should be
* reset to and keep an offset to the except branch of a try/except statement
* pair (or the exit point of the try, if there is no except branch). These
* objects can't be built by (text) user code, but erroneous bytecode / module
* stack manipulation could result in a handler being in the wrong place,
* at which point there's no guarantees about what happens.
*/
static int handleException() {
int stackOffset, frameOffset;
int exitSlot = (vm.exitOnFrame >= 0) ? vm.frames[vm.exitOnFrame].outSlots : 0;
for (stackOffset = (int)(vm.stackTop - vm.stack - 1); stackOffset >= exitSlot && !IS_HANDLER(vm.stack[stackOffset]); stackOffset--);
if (stackOffset < exitSlot) {
if (exitSlot == 0) {
/*
* No exception was found and we have reached the top of the call stack.
* Call dumpTraceback to present the exception to the user and reset the
* VM stack state. It should still be safe to execute more code after
* this reset, so the repl can throw errors and keep accepting new lines.
*/
dumpTraceback();
resetStack();
vm.frameCount = 0;
}
/* If exitSlot was not 0, there was an exception during a call to runNext();
* this is likely to be raised higher up the stack as an exception in the outer
* call, but we don't want to print the traceback here. */
return 1;
}
/* Find the call frame that owns this stack slot */
for (frameOffset = vm.frameCount - 1; frameOffset >= 0 && (int)vm.frames[frameOffset].slots > stackOffset; frameOffset--);
if (frameOffset == -1) {
fprintf(stderr, "Internal error: Call stack is corrupted - unable to find\n");
fprintf(stderr, " call frame that owns exception handler.\n");
exit(1);
}
/* We found an exception handler and can reset the VM to its call frame. */
closeUpvalues(stackOffset);
vm.stackTop = vm.stack + stackOffset + 1;
vm.frameCount = frameOffset + 1;
/* Clear the exception flag so we can continue executing from the handler. */
vm.flags &= ~KRK_HAS_EXCEPTION;
return 0;
}
/**
* Load a module.
*
* The module search path is stored in __builtins__.module_paths and should
* be a list of directories (with trailing forward-slash) to look at, in order,
* to resolve module names. krk source files will always take priority, so if
* a later search path has a krk source and an earlier search path has a shared
* object module, the later search path will still win.
*/
int krk_loadModule(KrkString * name, KrkValue * moduleOut) {
KrkValue modulePaths, modulePathsInternal;
/* See if the module is already loaded */
if (krk_tableGet(&vm.modules, OBJECT_VAL(name), moduleOut)) return 1;
/* Obtain __builtins__.module_paths */
if (!krk_tableGet(&vm.builtins->fields, OBJECT_VAL(S("module_paths")), &modulePaths) || !IS_INSTANCE(modulePaths)) {
*moduleOut = NONE_VAL();
krk_runtimeError(vm.exceptions.baseException,
"Internal error: __builtins__.module_paths not defined.");
return 0;
}
/* Obtain __builtins__.module_paths.__list so we can do lookups directly */
if (!krk_tableGet(&(AS_INSTANCE(modulePaths)->fields), vm.specialMethodNames[METHOD_LIST_INT], &modulePathsInternal) || !IS_FUNCTION(modulePathsInternal)) {
*moduleOut = NONE_VAL();
krk_runtimeError(vm.exceptions.baseException,
"Internal error: __builtins__.module_paths is corrupted or incorrectly set.");
return 0;
}
/*
* So maybe storing lists magically as functions to reuse their constants
* tables isn't the _best_ approach, but it works, and until I do something
* else it's what we have, so let's do the most efficient thing and look
* at the function object directly instead of calling _list_length/_get
*/
int moduleCount = AS_FUNCTION(modulePathsInternal)->chunk.constants.count;
if (!moduleCount) {
*moduleOut = NONE_VAL();
krk_runtimeError(vm.exceptions.importError,
"No module search directories are specified, so no modules may be imported.");
return 0;
}
struct stat statbuf;
/* First search for {name}.krk in the module search paths */
for (int i = 0; i < moduleCount; ++i, krk_pop()) {
krk_push(AS_FUNCTION(modulePathsInternal)->chunk.constants.values[i]);
if (!IS_STRING(krk_peek(0))) {
*moduleOut = NONE_VAL();
krk_runtimeError(vm.exceptions.typeError,
"Module search paths must be strings; check the search path at index %d", i);
return 0;
}
krk_push(OBJECT_VAL(name));
addObjects(); /* Concatenate path... */
krk_push(OBJECT_VAL(S(".krk")));
addObjects(); /* and file extension */
char * fileName = AS_CSTRING(krk_peek(0));
if (stat(fileName,&statbuf) < 0) continue;
/* Compile and run the module in a new context and exit the VM when it
* returns to the current call frame; modules should return objects. */
int previousExitFrame = vm.exitOnFrame;
vm.exitOnFrame = vm.frameCount;
*moduleOut = krk_runfile(fileName,1,name->chars,fileName);
vm.exitOnFrame = previousExitFrame;
if (!IS_OBJECT(*moduleOut)) {
krk_runtimeError(vm.exceptions.importError,
"Failed to load module '%s' from '%s'", name->chars, fileName);
return 0;
}
krk_pop(); /* concatenated filename on stack */
krk_push(*moduleOut);
krk_tableSet(&vm.modules, OBJECT_VAL(name), *moduleOut);
return 1;
}
/* If we didn't find {name}.krk, try {name}.so in the same order */
for (int i = 0; i < moduleCount; ++i, krk_pop()) {
/* Assume things haven't changed and all of these are strings. */
krk_push(AS_FUNCTION(modulePathsInternal)->chunk.constants.values[i]);
krk_push(OBJECT_VAL(name));
addObjects(); /* this should just be basic concatenation */
krk_push(OBJECT_VAL(S(".so")));
addObjects();
char * fileName = AS_CSTRING(krk_peek(0));
if (stat(fileName,&statbuf) < 0) continue;
void * dlRef = dlopen(fileName, RTLD_NOW);
if (!dlRef) {
*moduleOut = NONE_VAL();
krk_runtimeError(vm.exceptions.importError,
"Failed to load native module '%s' from shared object '%s'", name->chars, fileName);
return 0;
}
krk_push(OBJECT_VAL(S("krk_module_onload_")));
krk_push(OBJECT_VAL(name));
addObjects();
char * handlerName = AS_CSTRING(krk_peek(0));
KrkValue (*moduleOnLoad)();
void * out = dlsym(dlRef, handlerName);
memcpy(&moduleOnLoad,&out,sizeof(out));
if (!moduleOnLoad) {
*moduleOut = NONE_VAL();
krk_runtimeError(vm.exceptions.importError,
"Failed to run module initialization method '%s' from shared object '%s'",
handlerName, fileName);
return 0;
}
krk_pop(); /* onload function */
*moduleOut = moduleOnLoad();
if (!IS_OBJECT(*moduleOut)) {
krk_runtimeError(vm.exceptions.importError,
"Failed to load module '%s' from '%s'", name->chars, fileName);
return 0;
}
krk_pop(); /* filename */
krk_push(*moduleOut);
krk_tableSet(&vm.modules, OBJECT_VAL(name), *moduleOut);
return 1;
}
/* If we still haven't found anything, fail. */
*moduleOut = NONE_VAL();
krk_runtimeError(vm.exceptions.importError, "No module named '%s'", name->chars);
return 0;
}
/**
* Try to resolve and push [stack top].name.
* If [stack top] is an instance, scan fields first.
* Otherwise, scan for methods from [stack top].__class__.
* Returns 0 if nothing was found, 1 if something was - and that
* "something" will replace [stack top].
*/
static int valueGetProperty(KrkString * name) {
KrkClass * objectClass;
if (IS_INSTANCE(krk_peek(0))) {
KrkInstance * instance = AS_INSTANCE(krk_peek(0));
KrkValue value;
if (krk_tableGet(&instance->fields, OBJECT_VAL(name), &value)) {
krk_pop();
krk_push(value);
return 1;
}
objectClass = instance->_class;
} else {
objectClass = AS_CLASS(krk_typeOf(1, (KrkValue[]){krk_peek(0)}));
}
/* See if the base class for this non-instance type has a method available */
if (krk_bindMethod(objectClass, name)) {
return 1;
}
return 0;
}
#define READ_BYTE() (*frame->ip++)
#define BINARY_OP(op) { KrkValue b = krk_pop(); KrkValue a = krk_pop(); krk_push(op(a,b)); break; }
#define READ_CONSTANT(s) (frame->closure->function->chunk.constants.values[readBytes(frame,s)])
#define READ_STRING(s) AS_STRING(READ_CONSTANT(s))
/**
* Read bytes after an opcode. Most instructions take 1, 2, or 3 bytes as an
* operand referring to a local slot, constant slot, or offset.
*/
static inline size_t readBytes(CallFrame * frame, int num) {
size_t out = READ_BYTE();
while (--num) {
out <<= 8;
out |= (READ_BYTE() & 0xFF);
}
return out;
}
/**
* VM main loop.
*/
static KrkValue run() {
CallFrame* frame = &vm.frames[vm.frameCount - 1];
while (1) {
#ifdef ENABLE_TRACING
if (vm.flags & KRK_ENABLE_TRACING) {
dumpStack(frame);
krk_disassembleInstruction(&frame->closure->function->chunk,
(size_t)(frame->ip - frame->closure->function->chunk.code));
}
#endif
uint8_t opcode = READ_BYTE();
/* We split the instruction opcode table in half and use the top bit
* to mark instructions as "long" as we can quickly determine operand
* widths. The standard opereand width is 1 byte. If operands need
* to use more than 256 possible values, such as when the stack
* is very large or there are a lot of constants in a single chunk of
* bytecode, the long opcodes provide 24 bits of operand space. */
int operandWidth = (opcode & (1 << 7)) ? 3 : 1;
switch (opcode) {
case OP_PRINT_LONG:
case OP_PRINT: {
uint32_t args = readBytes(frame, operandWidth);
for (uint32_t i = 0; i < args; ++i) {
KrkValue printable = krk_peek(args-i-1);
if (IS_STRING(printable)) { /* krk_printValue runs repr */
fprintf(stdout, "%s", AS_CSTRING(printable));
} else {
krk_printValue(stdout, printable);
}
fputc((i == args - 1) ? '\n' : ' ', stdout);
}
for (uint32_t i = 0; i < args; ++i) {
krk_pop();
}
break;
}
case OP_RETURN: {
KrkValue result = krk_pop();
closeUpvalues(frame->slots);
vm.frameCount--;
if (vm.frameCount == 0) {
krk_pop();
return result;
}
vm.stackTop = &vm.stack[frame->outSlots];
if (vm.frameCount == (size_t)vm.exitOnFrame) {
return result;
}
krk_push(result);
frame = &vm.frames[vm.frameCount - 1];
break;
}
case OP_EQUAL: {
KrkValue b = krk_pop();
KrkValue a = krk_pop();
krk_push(BOOLEAN_VAL(krk_valuesEqual(a,b)));
break;
}
case OP_LESS: BINARY_OP(less);
case OP_GREATER: BINARY_OP(greater)
case OP_ADD:
if (IS_OBJECT(krk_peek(0)) || IS_OBJECT(krk_peek(1))) addObjects();
else BINARY_OP(add)
break;
case OP_SUBTRACT: BINARY_OP(subtract)
case OP_MULTIPLY: BINARY_OP(multiply)
case OP_DIVIDE: BINARY_OP(divide)
case OP_MODULO: BINARY_OP(modulo)
case OP_BITOR: BINARY_OP(bitor)
case OP_BITXOR: BINARY_OP(bitxor)
case OP_BITAND: BINARY_OP(bitand)
case OP_SHIFTLEFT: BINARY_OP(shiftleft)
case OP_SHIFTRIGHT: BINARY_OP(shiftright)
case OP_BITNEGATE: {
KrkValue value = krk_pop();
if (IS_INTEGER(value)) krk_push(INTEGER_VAL(~AS_INTEGER(value)));
else { krk_runtimeError(vm.exceptions.typeError, "Incompatible operand type for bit negation."); goto _finishException; }
break;
}
case OP_NEGATE: {
KrkValue value = krk_pop();
if (IS_INTEGER(value)) krk_push(INTEGER_VAL(-AS_INTEGER(value)));
else if (IS_FLOATING(value)) krk_push(FLOATING_VAL(-AS_FLOATING(value)));
else { krk_runtimeError(vm.exceptions.typeError, "Incompatible operand type for prefix negation."); goto _finishException; }
break;
}
case OP_CONSTANT_LONG:
case OP_CONSTANT: {
size_t index = readBytes(frame, operandWidth);
KrkValue constant = frame->closure->function->chunk.constants.values[index];
krk_push(constant);
break;
}
case OP_NONE: krk_push(NONE_VAL()); break;
case OP_TRUE: krk_push(BOOLEAN_VAL(1)); break;
case OP_FALSE: krk_push(BOOLEAN_VAL(0)); break;
case OP_NOT: krk_push(BOOLEAN_VAL(isFalsey(krk_pop()))); break;
case OP_POP: krk_pop(); break;
case OP_DEFINE_GLOBAL_LONG:
case OP_DEFINE_GLOBAL: {
KrkString * name = READ_STRING(operandWidth);
krk_tableSet(&vm.globals, OBJECT_VAL(name), krk_peek(0));
krk_pop();
break;
}
case OP_GET_GLOBAL_LONG:
case OP_GET_GLOBAL: {
KrkString * name = READ_STRING(operandWidth);
KrkValue value;
if (!krk_tableGet(&vm.globals, OBJECT_VAL(name), &value)) {
krk_runtimeError(vm.exceptions.nameError, "Undefined variable '%s'.", name->chars);
goto _finishException;
}
krk_push(value);
break;
}
case OP_SET_GLOBAL_LONG:
case OP_SET_GLOBAL: {
KrkString * name = READ_STRING(operandWidth);
if (krk_tableSet(&vm.globals, OBJECT_VAL(name), krk_peek(0))) {
krk_tableDelete(&vm.globals, OBJECT_VAL(name));
/* TODO: This should probably just work as an assignment? */
krk_runtimeError(vm.exceptions.nameError, "Undefined variable '%s'.", name->chars);
goto _finishException;
}
break;
}
case OP_IMPORT_LONG:
case OP_IMPORT: {
KrkString * name = READ_STRING(operandWidth);
KrkValue module;
if (!krk_loadModule(name, &module)) {
goto _finishException;
}
break;
}
case OP_GET_LOCAL_LONG:
case OP_GET_LOCAL: {
uint32_t slot = readBytes(frame, operandWidth);
krk_push(vm.stack[frame->slots + slot]);
break;
}
case OP_SET_LOCAL_LONG:
case OP_SET_LOCAL: {
uint32_t slot = readBytes(frame, operandWidth);
vm.stack[frame->slots + slot] = krk_peek(0);
break;
}
case OP_JUMP_IF_FALSE: {
uint16_t offset = readBytes(frame, 2);
if (isFalsey(krk_peek(0))) frame->ip += offset;
break;
}
case OP_JUMP_IF_TRUE: {
uint16_t offset = readBytes(frame, 2);
if (!isFalsey(krk_peek(0))) frame->ip += offset;
break;
}
case OP_JUMP: {
frame->ip += readBytes(frame, 2);
break;
}
case OP_LOOP: {
uint16_t offset = readBytes(frame, 2);
frame->ip -= offset;
break;
}
case OP_PUSH_TRY: {
uint16_t tryTarget = readBytes(frame, 2) + (frame->ip - frame->closure->function->chunk.code);
KrkValue handler = HANDLER_VAL(tryTarget);
krk_push(handler);
break;
}
case OP_RAISE: {
vm.currentException = krk_pop();
vm.flags |= KRK_HAS_EXCEPTION;
goto _finishException;
}
/* Sometimes you just want to increment a stack-local integer quickly. */
case OP_INC_LONG:
case OP_INC: {
uint32_t slot = readBytes(frame, operandWidth);
vm.stack[frame->slots + slot] = INTEGER_VAL(AS_INTEGER(vm.stack[frame->slots+slot])+1);
break;
}
case OP_CALL_LONG:
case OP_CALL: {
int argCount = readBytes(frame, operandWidth);
if (!krk_callValue(krk_peek(argCount), argCount, 1)) {
if (vm.flags & KRK_HAS_EXCEPTION) goto _finishException;
return NONE_VAL();
}
frame = &vm.frames[vm.frameCount - 1];
break;
}
/* This version of the call instruction takes its arity from the
* top of the stack, so we don't have to calculate arity at compile time. */
case OP_CALL_STACK: {
int argCount = AS_INTEGER(krk_pop());
if (!krk_callValue(krk_peek(argCount), argCount, 1)) {
if (vm.flags & KRK_HAS_EXCEPTION) goto _finishException;
return NONE_VAL();
}
frame = &vm.frames[vm.frameCount - 1];
break;
}
case OP_CLOSURE_LONG:
case OP_CLOSURE: {
KrkFunction * function = AS_FUNCTION(READ_CONSTANT(operandWidth));
KrkClosure * closure = krk_newClosure(function);
krk_push(OBJECT_VAL(closure));
for (size_t i = 0; i < closure->upvalueCount; ++i) {
int isLocal = READ_BYTE();
int index = readBytes(frame,(i > 255) ? 3 : 1);
if (isLocal) {
closure->upvalues[i] = captureUpvalue(frame->slots + index);
} else {
closure->upvalues[i] = frame->closure->upvalues[index];
}
}
break;
}
case OP_GET_UPVALUE_LONG:
case OP_GET_UPVALUE: {
int slot = readBytes(frame, operandWidth);
krk_push(*UPVALUE_LOCATION(frame->closure->upvalues[slot]));
break;
}
case OP_SET_UPVALUE_LONG:
case OP_SET_UPVALUE: {
int slot = readBytes(frame, operandWidth);
*UPVALUE_LOCATION(frame->closure->upvalues[slot]) = krk_peek(0);
break;
}
case OP_CLOSE_UPVALUE:
closeUpvalues((vm.stackTop - vm.stack)-1);
krk_pop();
break;
case OP_CLASS_LONG:
case OP_CLASS: {
KrkString * name = READ_STRING(operandWidth);
KrkClass * _class = krk_newClass(name);
krk_push(OBJECT_VAL(_class));
_class->filename = frame->closure->function->chunk.filename;
_class->base = vm.objectClass;
krk_tableAddAll(&vm.objectClass->methods, &_class->methods);
break;
}
case OP_GET_PROPERTY_LONG:
case OP_GET_PROPERTY: {
KrkString * name = READ_STRING(operandWidth);
if (!valueGetProperty(name)) {
krk_runtimeError(vm.exceptions.attributeError, "'%s' object has no attribute '%s'", krk_typeName(krk_peek(0)), name->chars);
goto _finishException;
}
break;
}
case OP_INVOKE_GETTER: {
krk_swap(1);
valueGetProperty(AS_STRING(vm.specialMethodNames[METHOD_GET]));
krk_swap(1);
switch (krk_callValue(krk_peek(1),1,1)) {
case 2: break;
case 1: krk_push(krk_runNext()); break;
default: krk_runtimeError(vm.exceptions.typeError, "Invalid method call."); goto _finishException;
}
break;
}
case OP_INVOKE_SETTER: {
krk_push(krk_peek(2)); /* object to top */
valueGetProperty(AS_STRING(vm.specialMethodNames[METHOD_SET]));
krk_swap(3);
krk_pop();
switch (krk_callValue(krk_peek(2),2,1)) {
case 2: break;
case 1: krk_push(krk_runNext()); break;
default: krk_runtimeError(vm.exceptions.typeError, "Invalid method call."); goto _finishException;
}
break;
}
case OP_INVOKE_GETSLICE: {
krk_push(krk_peek(2)); /* object to top */
valueGetProperty(AS_STRING(vm.specialMethodNames[METHOD_GETSLICE]));
krk_swap(3);
krk_pop();
switch (krk_callValue(krk_peek(2),2,1)) {
case 2: break;
case 1: krk_push(krk_runNext()); break;
default: krk_runtimeError(vm.exceptions.typeError, "Invalid method call."); goto _finishException;
}
break;
}
case OP_SET_PROPERTY_LONG:
case OP_SET_PROPERTY: {
KrkString * name = READ_STRING(operandWidth);
if (!IS_INSTANCE(krk_peek(1))) {
krk_runtimeError(vm.exceptions.attributeError, "'%s' object has no attribute '%s'", krk_typeName(krk_peek(0)), name->chars);
goto _finishException;
}
KrkInstance * instance = AS_INSTANCE(krk_peek(1));
krk_tableSet(&instance->fields, OBJECT_VAL(name), krk_peek(0));
KrkValue value = krk_pop();
krk_pop(); /* instance */
krk_push(value); /* Moves value in */
break;
}
case OP_METHOD_LONG:
case OP_METHOD: {
KrkValue method = krk_peek(0);
KrkClass * _class = AS_CLASS(krk_peek(1));
krk_tableSet(&_class->methods, OBJECT_VAL(READ_STRING(operandWidth)), method);
krk_pop();
break;
}
case OP_INHERIT: {
KrkValue superclass = krk_peek(1);
if (!IS_CLASS(superclass)) {
krk_runtimeError(vm.exceptions.typeError, "Superclass must be a class.");
return NONE_VAL();
}
KrkClass * subclass = AS_CLASS(krk_peek(0));
subclass->base = AS_CLASS(superclass);
krk_tableAddAll(&AS_CLASS(superclass)->methods, &subclass->methods);
krk_pop();
break;
}
case OP_DOCSTRING: {
KrkClass * me = AS_CLASS(krk_peek(1));
me->docstring = AS_STRING(krk_pop());
break;
}
case OP_GET_SUPER_LONG:
case OP_GET_SUPER: {
KrkString * name = READ_STRING(operandWidth);
KrkClass * superclass = AS_CLASS(krk_pop());
if (!krk_bindMethod(superclass, name)) {
return NONE_VAL();
}
break;
}
case OP_DUP:
krk_push(krk_peek(READ_BYTE()));
break;
case OP_SWAP:
krk_swap(1);
break;
}
if (!(vm.flags & KRK_HAS_EXCEPTION)) continue;
_finishException:
if (!handleException()) {
frame = &vm.frames[vm.frameCount - 1];
frame->ip = frame->closure->function->chunk.code + AS_HANDLER(krk_peek(0));
/* Replace the exception handler with the exception */
krk_pop();
krk_push(vm.currentException);
vm.currentException = NONE_VAL();
} else {
return NONE_VAL();
}
}
#undef BINARY_OP
#undef READ_BYTE
}
KrkValue krk_interpret(const char * src, int newScope, char * fromName, char * fromFile) {
KrkFunction * function = krk_compile(src, newScope, fromFile);
if (!function) return NONE_VAL();
krk_push(OBJECT_VAL(function));
function->name = krk_copyString(fromName, strlen(fromName));
KrkClosure * closure = krk_newClosure(function);
krk_pop();
krk_push(OBJECT_VAL(closure));
krk_callValue(OBJECT_VAL(closure), 0, 1);
return run();
}
KrkValue krk_runfile(const char * fileName, int newScope, char * fromName, char * fromFile) {
FILE * f = fopen(fileName,"r");
if (!f) {
if (!newScope) {
fprintf(stderr, "kuroko: could not read file '%s': %s\n", fileName, strerror(errno));
}
return INTEGER_VAL(errno);
}
fseek(f, 0, SEEK_END);
size_t size = ftell(f);
fseek(f, 0, SEEK_SET);
char * buf = malloc(size+1);
if (fread(buf, 1, size, f) != size) {
fprintf(stderr, "Warning: Failed to read file.\n");
}
fclose(f);
buf[size] = '\0';
KrkValue result = krk_interpret(buf, newScope, fromName, fromFile);
free(buf);
return result;
}