Implement float → string conversion

This commit is contained in:
K. Lange 2024-02-27 19:37:23 +09:00
parent 9ad85010bf
commit 4e97099bd6
2 changed files with 331 additions and 12 deletions

View File

@ -2399,6 +2399,300 @@ KrkValue krk_int_from_float(double val) {
krk_long_set_sign(&_value, sign == 1 ? -1 : 1); krk_long_set_sign(&_value, sign == 1 ? -1 : 1);
return make_long_obj(&_value); return make_long_obj(&_value);
} }
KrkValue krk_double_to_string(double a, int exact, unsigned int digits, char formatter, int plus) {
union { double d; uint64_t u; } val = {.d = a};
/* Extract sign, mantissa, exponent from double, and handle special cases. */
int sign = (val.u >> 63ULL) ? 1 : 0;
int64_t m = val.u & 0x000fffffffffffffULL;
int64_t e = ((val.u >> 52ULL) & 0x7FF) - 0x3FF;
if (e == 1024) {
if (m) return OBJECT_VAL(S("nan"));
if (sign) return OBJECT_VAL(S("-inf"));
return OBJECT_VAL(S("inf"));
}
if (e == -1023 && m == 0) return OBJECT_VAL(S("0.0"));
/* We need to cache the decimal versions of each necessary division of 10⁵⁵, if we've not seen them before. */
KrkValue float_decimal_parts = NONE_VAL();
if (!krk_tableGet_fast(&vm.baseClasses->floatClass->methods, S("__decimals__"), &float_decimal_parts)) {
krk_push(OBJECT_VAL(krk_newTuple(53)));
float_decimal_parts = krk_peek(0);
KrkLong d;
krk_long_parse_string("10000000000000000000000000000000000000000000000000000000", &d, 10, 56);
for (int i = 0; i < 53; ++i) {
AS_TUPLE(float_decimal_parts)->values.values[AS_TUPLE(float_decimal_parts)->values.count++] = make_long_obj(&d);
if (i != 52) {
KrkLong o;
krk_long_init_si(&o,0);
_krk_long_rshift_z(&o,&d,1);
d = o;
}
}
/* Attach to float class. */
krk_attachNamedValue(&vm.baseClasses->floatClass->methods, "__decimals__", float_decimal_parts);
krk_pop();
}
/* Given that a double takes the form 2ⁿ × m, where either 1.0 ≤ m < 2.0 or
* (for subnormals) 0 < m < 1.0, generate a decimal representation of m as the
* numerator in a fraction with 10 as the denominator. For example, the
* value 123.456 is represented as:
* 2 × 1.9290000000000000479616346638067625463008880615234375
* So we want to have the value:
* 19290000000000000479616346638067625463008880615234375
* The number of decimal digits needed for this is always the same. We'll then
* take that value and apply the base-2 exponent multiplication through shifting
* to get the equivalent multiplier for a base-10 exponent. */
KrkLong c;
if (e == -1023) {
/* For subnormal values, the implicit 1 disappears and the actual exponent value
* is -1022, so instead of initializing our counter to have the leading 1, we start
* with just 0. */
krk_long_init_si(&c,0);
e = -1022;
} else {
/* Otherwise, our decimal representation of the multiplier will start with a 1, so
* start us off with 10 from above. */
krk_long_init_copy(&c, AS_long(AS_TUPLE(float_decimal_parts)->values.values[0])->value);
}
/* We add up the decimal values for each bit in the mantissa from large to small. */
for (int i = 0; i < 52; ++i) {
if (m & (1ULL << (51 - i))) {
krk_long_add(&c,&c, AS_long(AS_TUPLE(float_decimal_parts)->values.values[i+1])->value);
}
}
/* At this point, we know that we have 55 decimal digits to the right of the radix point;
* this represents the base-10 exponent of our denominator. We want to maintain an exact
* value for m after turning the base-2 exponent into a base-10 exponent, so if our
* original base-2 exponent is negative, we might need to add more 0s to the end of
* both the top and bottom of the fraction - we'll add to b to account for that. */
int b = 55;
if (e < 0) {
KrkLong f;
/* Repeatedly multiply to increase number of decimal digits by 31, until the resulting
* binary representation has enough trailing 0 bits we can shift away the negative
* exponent and still have an exact decimal representation. */
krk_long_parse_string("10000000000000000000000000000000", &f, 10, 32);
while (1) {
ssize_t i = 0;
while (!_bit_is_set(&c,i)) i++;
if (i >= -e) break;
krk_long_mul(&c,&c,&f);
b += 31;
}
krk_long_clear(&f);
}
/* Now, finally, shifting our numerator left or right based on the base-2 exponent
* gives us our base-10 equivalent multiplier, multipled by a large power of ten. */
if (e) {
KrkLong o;
krk_long_init_si(&o,0);
if (e < 0) {
_krk_long_rshift_z(&o,&c,-e);
} else {
_krk_long_lshift_z(&o,&c,e);
}
krk_long_clear(&c);
c = o;
}
/* At this point, c is the numerator in a fraction with 10^b as the denominator, and
* that fraction represents our multiplier in the expression "10^n × m". "n" can be
* determined based on the number of decimal digits in c and the size of b. We no
* longer need our bigints, we want to deal entirely in decimal - so we'll convert
* to a decimal string. */
size_t len = 0;
char * str = krk_long_to_decimal_str(&c, &len);
krk_long_clear(&c);
unsigned int odigits = digits;
/* At this point, we want to round the answer to fit a more reasonable number of
* digits. We have the exact value, in decimal, in string form - so we can do
* some truncation and look at the values we are truncating away to determine if
* we should round up (add one and propogate until the carry disappears), or keep
* the truncated value. */
if (!exact) {
/* Figure out how many significant digits we actually have, excluding any
* trailing 0s which will get stripped away later anyway. */
size_t actual = len;
while (actual > 1 && str[actual-1] == '0') actual--;
if (formatter == 'f') {
if (b > (int)len && b - len <= digits) {
/* Make sure we round? */
digits -= b - len;
} else if (b > (int)len && b - len > digits) {
/* Going to be zero, just return that. */
actual = 0;
len = 0;
b = digits;
} else if (b < (int)len) {
/* Need to account for the whole digits */
digits += len - b;
}
}
/* Round the result to just 16 or 17 decimal digits, rounding to even. If
* the actual number of digits was already smaller than that, do nothing. */
if (actual > digits) {
int carry = 0;
if (str[digits] == '5' && ((digits ? str[digits-1] : 0) % 2 == 0)) {
/* Because our decimal representation is exact, we can be sure that
* this correctly rounds halfway to even because we know all of the
* digits after the truncated 5 are zero or non-zero. */
int all_zeros = 1;
for (size_t j = actual - 1; j > digits; j--) {
if (str[j] != '0') {
all_zeros = 0;
break;
}
}
carry = all_zeros ? 0 : 1;
} else if (str[digits] >= '5') {
/* In other cases, round up if necessary. */
carry = 1;
}
size_t i = digits;
while (i && carry) {
/* Propogate carry */
if (str[i-1] - '0' + carry > 9) {
str[i-1] = '0';
carry = 1;
} else {
str[i-1] += carry;
carry = 0;
}
i--;
}
/* Reduce the number of digits behind the radix point by the number of
* digits we truncated away, and update the length to the actual length. */
b -= (int)len - digits;
len = digits;
if (carry && i == 0) {
/* Carry results in new digit on left, push all the relevant stuff over. */
for (size_t j = 0; j < digits; ++j) {
str[j+1] = str[j];
}
/* The new digit is always going to be 1. */
str[0] = '1';
/* Adjust length of resulting valid string; b remains the same, as we
* did not remove any trailing digits at this point. */
len++;
}
}
}
/* Now we're going to split up the decimal string into the whole part and the
* fractional part. The whole part, p, is either a prefix of the decimal string,
* or is "0" if there is no whole part. */
char * p = "0";
size_t plen = 1;
if (b < 0) {
p = str;
plen = len;
} else if (b < (int)len) {
p = str;
plen = len - b;
}
/* The fractional part, s, consists of the rest of the digits. */
char * s = str;
size_t slen = len;
int extra_zeros = b - slen;
if (b < 0) {
s = "0";
slen = 1;
extra_zeros = -b;
} else if (b < (int)len) {
s = str + len - b;
slen = b;
extra_zeros = 0;
}
/* Now we can remove all of the trailing zeros from s. If s is
* all zeros, we should keep one... */
while (slen > 1 && s[slen-1] == '0') slen--;
if (!slen) {
s = "0";
slen = 1;
}
/* Now we can take our truncated value and format it to a final output. */
struct StringBuilder sb = {0};
/* First the negative sign. */
if (sign) krk_pushStringBuilder(&sb, '-');
else if (plus) krk_pushStringBuilder(&sb, '+');
if (formatter != 'f' && plen == 1 && *p == '0' && extra_zeros >= 4) {
/* Whole part is 0, fractional part has enough leading zeros to switch
* to exponential notation. Strip leading zeros from fractional part,
* print first digit, then if there are more digits, print dot and
* the remaining digit. Finally, print the exponent. */
while (slen > 1 && *s == '0') slen--, s++;
krk_pushStringBuilder(&sb, s[0]);
if (slen > 1) {
krk_pushStringBuilder(&sb, '.');
krk_pushStringBuilderStr(&sb, s+1,slen-1);
}
krk_pushStringBuilderFormat(&sb,"e-%s%d",(extra_zeros+1)<10?"0":"",extra_zeros+1);
} else if (formatter != 'f' && plen + extra_zeros > digits) {
/* Whole part is long; switch to exponential notation. Print leading
* non-zero digit of whole part, strip all trailing zeros from s,
* then extra, then p itself, and if there's still non-zero digits
* then print a dot, then the digits from p, then the extra zeros,
* then the digits from s. Finally, print the exponent.
*/
int iplen = plen + extra_zeros - 1;
krk_pushStringBuilder(&sb,p[0]);
while (slen && s[slen-1] == '0') slen--; /* All trailing 0s from s, even if it is just 0 */
if (slen == 0) extra_zeros = 0; /* If s is now empty, skip all of the extra zeros */
if (slen == 0 && extra_zeros == 0) { /* There that then results in no digits, strip trailing 0s from p */
while (plen > 1 && p[plen-1] == '0') plen--;
}
if (plen + extra_zeros + slen > 1) { /* If there are still digits left to print, print them */
krk_pushStringBuilder(&sb, '.');
krk_pushStringBuilderStr(&sb, p+1,plen-1); /* First from p */
while (extra_zeros) { /* Then from extra zeros */
krk_pushStringBuilder(&sb,'0');
extra_zeros--;
}
krk_pushStringBuilderStr(&sb, s, slen); /* Then from s */
}
krk_pushStringBuilderFormat(&sb,"e+%s%d",iplen<10?"0":"",iplen);
} else {
/* Whole part and fractional part are within range to use normal notation.
* First print all of the whole digits, then a dot. If there are no digits
* from s and the extra zeros, force a zero to be printed, otherwise print
* those remaining digits.
*/
krk_pushStringBuilderStr(&sb, p, plen);
krk_pushStringBuilder(&sb, '.');
if (slen == 1 && *s == '0') extra_zeros = 0;
if (slen + extra_zeros) {
for (int i = 0; i < extra_zeros; i++) {
krk_pushStringBuilder(&sb,'0');
}
krk_pushStringBuilderStr(&sb, s, slen);
}
/* Ensure we end with either .0 or some additional number of zeros for the 'f' formatter. */
for (unsigned int i = extra_zeros + slen; i < ((formatter == 'f') ? odigits : 1); i++) {
krk_pushStringBuilder(&sb, '0');
}
}
free(str);
return krk_finishStringBuilder(&sb);
}
#endif #endif
/** /**

View File

@ -627,21 +627,45 @@ KRK_StaticMethod(float,__new__) {
KRK_Method(float,__int__) { return krk_int_from_float(self); } KRK_Method(float,__int__) { return krk_int_from_float(self); }
KRK_Method(float,__float__) { return argv[0]; } KRK_Method(float,__float__) { return argv[0]; }
static int isDigits(const char * c) { extern KrkValue krk_double_to_string(double,int,unsigned int,char,int);
while (*c) { KRK_Method(float,__repr__) {
if (*c != '-' && (*c < '0' || *c > '9')) return 0; return krk_double_to_string(self,0,16,'g',0);
c++;
}
return 1;
} }
KRK_Method(float,__repr__) { KRK_Method(float,__format__) {
char tmp[100]; char * format_spec;
size_t l = snprintf(tmp, 97, "%.16g", self); size_t format_spec_length;
if (!strstr(tmp,".") && isDigits(tmp)) { if (!krk_parseArgs(".s#", (const char*[]){"format_spec"}, &format_spec, &format_spec_length)) return NONE_VAL();
l = snprintf(tmp,100,"%.16g.0",self);
struct ParsedFormatSpec opts = {0};
const char * spec = krk_parseCommonFormatSpec(&opts, format_spec, format_spec_length);
if (!spec) return NONE_VAL();
char formatter = 'g';
int digits = 16;
switch (*spec) {
case 0:
case 'g':
/* defaults */
break;
case 'f':
digits = 6;
formatter = 'f';
break;
default:
return krk_runtimeError(vm.exceptions->valueError,
"Unknown format code '%c' for object of type '%s'",
*spec,
"float");
} }
return OBJECT_VAL(krk_copyString(tmp, l));
if (opts.align || opts.alt || opts.width || opts.sep) return krk_runtimeError(vm.exceptions->valueError, "unsupported option for float");
if (opts.hasPrecision) digits = opts.prec;
return krk_double_to_string(self, 0, digits, formatter, opts.sign == '+');
} }
KRK_Method(float,__eq__) { KRK_Method(float,__eq__) {
@ -887,6 +911,7 @@ void _createAndBind_numericClasses(void) {
BIND_METHOD(float,__neg__); BIND_METHOD(float,__neg__);
BIND_METHOD(float,__abs__); BIND_METHOD(float,__abs__);
BIND_METHOD(float,__pos__); BIND_METHOD(float,__pos__);
BIND_METHOD(float,__format__);
#endif #endif
krk_finalizeClass(_float); krk_finalizeClass(_float);
KRK_DOC(_float, "Convert a number or string type to a float representation."); KRK_DOC(_float, "Convert a number or string type to a float representation.");