kuroko/compiler.c

1139 lines
30 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
2020-12-28 10:07:52 +03:00
#include <sys/types.h>
#include "kuroko.h"
#include "compiler.h"
#include "memory.h"
#include "scanner.h"
#include "object.h"
#include "debug.h"
#include "vm.h"
typedef struct {
KrkToken current;
KrkToken previous;
int hadError;
int panicMode;
} Parser;
typedef enum {
PREC_NONE,
PREC_ASSIGNMENT, /* = */
PREC_OR, /* or */
PREC_AND, /* and */
PREC_EQUALITY, /* == != in */
PREC_COMPARISON, /* < > <= >= */
PREC_TERM, /* + - */
PREC_FACTOR, /* * */
PREC_UNARY, /* ! - not */
PREC_CALL, /* . () */
PREC_PRIMARY
} Precedence;
2020-12-26 10:53:15 +03:00
typedef void (*ParseFn)(int);
typedef struct {
ParseFn prefix;
ParseFn infix;
Precedence precedence;
} ParseRule;
typedef struct {
KrkToken name;
ssize_t depth;
int isCaptured;
} Local;
typedef struct {
size_t index;
int isLocal;
} Upvalue;
typedef enum {
TYPE_FUNCTION,
TYPE_MODULE,
TYPE_METHOD,
TYPE_INIT,
} FunctionType;
#define MAX_LOCALS 256
typedef struct Compiler {
struct Compiler * enclosing;
KrkFunction * function;
FunctionType type;
Local locals[MAX_LOCALS];
size_t localCount;
size_t scopeDepth;
Upvalue upvalues[MAX_LOCALS];
} Compiler;
typedef struct ClassCompiler {
struct ClassCompiler * enclosing;
KrkToken name;
int hasSuperClass;
} ClassCompiler;
Parser parser;
Compiler * current = NULL;
ClassCompiler * currentClass = NULL;
static KrkChunk * currentChunk() {
return &current->function->chunk;
}
#define EMIT_CONSTANT_OP(opc, arg) do { if (arg < 256) { emitBytes(opc, arg); } \
else { emitBytes(opc ## _LONG, arg >> 16); emitBytes(arg >> 8, arg); } } while (0)
static void initCompiler(Compiler * compiler, FunctionType type) {
compiler->enclosing = current;
compiler->function = NULL;
compiler->type = type;
compiler->localCount = 0;
compiler->scopeDepth = 0;
2020-12-28 05:11:50 +03:00
compiler->function = krk_newFunction();
current = compiler;
if (type != TYPE_MODULE) {
2020-12-28 05:11:50 +03:00
current->function->name = krk_copyString(parser.previous.start, parser.previous.length);
}
Local * local = &current->locals[current->localCount++];
local->depth = 0;
local->isCaptured = 0;
if (type != TYPE_FUNCTION) {
local->name.start = "self";
local->name.length = 4;
} else {
local->name.start = "";
local->name.length = 0;
}
}
static void parsePrecedence(Precedence precedence);
static ssize_t parseVariable(const char * errorMessage);
static void variable(int canAssign);
2020-12-26 10:53:15 +03:00
static void defineVariable(size_t global);
static uint8_t argumentList();
static ssize_t identifierConstant(KrkToken * name);
static ssize_t resolveLocal(Compiler * compiler, KrkToken * name);
static ParseRule * getRule(KrkTokenType type);
static void defDeclaration();
2020-12-26 10:53:15 +03:00
static void expression();
static void statement();
static void declaration();
2020-12-26 14:39:47 +03:00
static void or_(int canAssign);
static void and_(int canAssign);
2020-12-27 10:45:34 +03:00
static void classDeclaration();
static void declareVariable();
static void namedVariable(KrkToken name, int canAssign);
static void addLocal(KrkToken name);
static void errorAt(KrkToken * token, const char * message) {
if (parser.panicMode) return;
parser.panicMode = 1;
fprintf(stderr, "[line %d] Error", (int)token->line);
if (token->type == TOKEN_EOF) {
fprintf(stderr, " at end");
} else if (token->type != TOKEN_ERROR) {
fprintf(stderr, " at '%.*s'", (int)token->length, token->start);
}
fprintf(stderr, ": %s\n", message);
parser.hadError = 1;
}
static void error(const char * message) {
errorAt(&parser.previous, message);
}
static void errorAtCurrent(const char * message) {
2020-12-26 14:39:47 +03:00
errorAt(&parser.previous, "(token before actual error)");
parser.panicMode = 0;
errorAt(&parser.current, message);
}
static void advance() {
parser.previous = parser.current;
for (;;) {
parser.current = krk_scanToken();
2020-12-28 04:54:25 +03:00
#ifdef ENABLE_SCAN_TRACING
if (vm.enableScanTracing) {
fprintf(stderr, "Token %d '%.*s' on line %d\n", parser.current.type,
(int)parser.current.length,
parser.current.start,
(int)parser.current.line);
}
#endif
if (parser.current.type == TOKEN_RETRY) continue;
if (parser.current.type != TOKEN_ERROR) break;
errorAtCurrent(parser.current.start);
}
}
static void consume(KrkTokenType type, const char * message) {
if (parser.current.type == type) {
advance();
return;
}
errorAtCurrent(message);
}
2020-12-26 10:53:15 +03:00
static int check(KrkTokenType type) {
return parser.current.type == type;
}
static int match(KrkTokenType type) {
if (!check(type)) return 0;
advance();
return 1;
}
static int identifiersEqual(KrkToken * a, KrkToken * b) {
return (a->length == b->length && memcmp(a->start, b->start, a->length) == 0);
}
static KrkToken syntheticToken(const char * text) {
KrkToken token;
token.start = text;
token.length = (int)strlen(text);
return token;
}
static void emitByte(uint8_t byte) {
krk_writeChunk(currentChunk(), byte, parser.previous.line);
}
static void emitBytes(uint8_t byte1, uint8_t byte2) {
emitByte(byte1);
emitByte(byte2);
}
static void emitReturn() {
if (current->type == TYPE_INIT) {
emitBytes(OP_GET_LOCAL, 0);
2020-12-28 04:54:25 +03:00
} else if (current->type == TYPE_MODULE) {
/* Un-pop the last stack value */
emitBytes(OP_GET_LOCAL, 1);
} else {
emitByte(OP_NONE);
}
emitByte(OP_RETURN);
}
static KrkFunction * endCompiler() {
emitReturn();
KrkFunction * function = current->function;
#ifdef ENABLE_DEBUGGING
if (vm.enableDebugging && !parser.hadError) {
krk_disassembleChunk(currentChunk(), function->name != NULL ? function->name->chars : "<module>");
}
#endif
current = current->enclosing;
return function;
}
2020-12-26 10:53:15 +03:00
static void endOfLine() {
if (!(match(TOKEN_EOL) || match(TOKEN_EOF))) {
errorAtCurrent("Expected end of line.");
}
}
static size_t emitConstant(KrkValue value) {
return krk_writeConstant(currentChunk(), value, parser.previous.line);
}
2020-12-26 10:53:15 +03:00
static void number(int canAssign) {
const char * start = parser.previous.start;
int base = 10;
/* These special cases for hexadecimal, binary, octal values. */
if (start[0] == '0' && (start[1] == 'x' || start[1] == 'X')) {
base = 16;
start += 2;
} else if (start[0] == '0' && (start[1] == 'b' || start[1] == 'B')) {
base = 2;
start += 2;
} else if (start[0] == '0' && (start[1] == 'o' || start[1] == 'O')) {
base = 8;
start += 2;
}
/* If it wasn't a special base, it may be a floating point value. */
if (base == 10) {
for (size_t j = 0; j < parser.previous.length; ++j) {
if (parser.previous.start[j] == '.') {
double value = strtod(start, NULL);
emitConstant(FLOATING_VAL(value));
return;
}
}
}
/* If we got here, it's an integer of some sort. */
int value = strtol(start, NULL, base);
emitConstant(INTEGER_VAL(value));
}
2020-12-26 10:53:15 +03:00
static void binary(int canAssign) {
KrkTokenType operatorType = parser.previous.type;
ParseRule * rule = getRule(operatorType);
parsePrecedence((Precedence)(rule->precedence + 1));
switch (operatorType) {
case TOKEN_BANG_EQUAL: emitBytes(OP_EQUAL, OP_NOT); break;
case TOKEN_EQUAL_EQUAL: emitByte(OP_EQUAL); break;
case TOKEN_GREATER: emitByte(OP_GREATER); break;
case TOKEN_GREATER_EQUAL: emitBytes(OP_LESS, OP_NOT); break;
case TOKEN_LESS: emitByte(OP_LESS); break;
case TOKEN_LESS_EQUAL: emitBytes(OP_GREATER, OP_NOT); break;
case TOKEN_PLUS: emitByte(OP_ADD); break;
case TOKEN_MINUS: emitByte(OP_SUBTRACT); break;
case TOKEN_ASTERISK: emitByte(OP_MULTIPLY); break;
case TOKEN_SOLIDUS: emitByte(OP_DIVIDE); break;
default: return;
}
}
static void call(int canAssign) {
uint8_t argCount = argumentList();
emitBytes(OP_CALL, argCount);
}
static void get_(int canAssign) {
/* Synthesize get */
KrkToken _get = syntheticToken("__get__");
KrkToken _set = syntheticToken("__set__");
size_t indGet = identifierConstant(&_get);
size_t indSet = identifierConstant(&_set);
size_t offset = currentChunk()->count + 1;
emitBytes(OP_GET_PROPERTY, indGet); /* TODO what if it's > 256 */
expression();
consume(TOKEN_RIGHT_SQUARE, "Expected ending square bracket...");
if (canAssign && match(TOKEN_EQUAL)) {
expression();
currentChunk()->code[offset] = indSet;
emitBytes(OP_CALL, 2);
} else {
emitBytes(OP_CALL, 1);
}
}
2020-12-27 10:45:34 +03:00
static void dot(int canAssign) {
consume(TOKEN_IDENTIFIER, "Expected propert name");
size_t ind = identifierConstant(&parser.previous);
if (canAssign && match(TOKEN_EQUAL)) {
expression();
EMIT_CONSTANT_OP(OP_SET_PROPERTY, ind);
} else {
EMIT_CONSTANT_OP(OP_GET_PROPERTY, ind);
}
}
2020-12-26 10:53:15 +03:00
static void literal(int canAssign) {
switch (parser.previous.type) {
case TOKEN_FALSE: emitByte(OP_FALSE); break;
case TOKEN_NONE: emitByte(OP_NONE); break;
case TOKEN_TRUE: emitByte(OP_TRUE); break;
default: return;
}
}
static void expression() {
parsePrecedence(PREC_ASSIGNMENT);
}
2020-12-26 10:53:15 +03:00
static void varDeclaration() {
ssize_t ind = parseVariable("Expected variable name.");
2020-12-26 10:53:15 +03:00
if (match(TOKEN_EQUAL)) {
expression();
} else {
emitByte(OP_NONE);
}
defineVariable(ind);
2020-12-26 10:53:15 +03:00
}
static void printStatement() {
expression();
emitByte(OP_PRINT);
}
static void synchronize() {
parser.panicMode = 0;
while (parser.current.type != TOKEN_EOF) {
if (parser.previous.type == TOKEN_EOL) return;
switch (parser.current.type) {
case TOKEN_CLASS:
case TOKEN_DEF:
case TOKEN_LET:
case TOKEN_FOR:
case TOKEN_IF:
case TOKEN_WHILE:
case TOKEN_PRINT:
case TOKEN_RETURN:
return;
default: break;
}
advance();
}
}
static void declaration() {
if (check(TOKEN_DEF)) {
defDeclaration();
} else if (match(TOKEN_LET)) {
2020-12-26 10:53:15 +03:00
varDeclaration();
2020-12-27 10:45:34 +03:00
} else if (check(TOKEN_CLASS)) {
classDeclaration();
2020-12-26 14:39:47 +03:00
} else if (check(TOKEN_EOL)) {
return;
2020-12-26 10:53:15 +03:00
} else {
statement();
}
if (parser.panicMode) synchronize();
}
static void expressionStatement() {
expression();
emitByte(OP_POP);
}
static void beginScope() {
current->scopeDepth++;
}
static void endScope() {
current->scopeDepth--;
while (current->localCount > 0 &&
2020-12-28 05:11:50 +03:00
current->locals[current->localCount - 1].depth > (ssize_t)current->scopeDepth) {
if (current->locals[current->localCount - 1].isCaptured) {
emitByte(OP_CLOSE_UPVALUE);
} else {
emitByte(OP_POP);
}
current->localCount--;
}
}
2020-12-28 05:11:50 +03:00
static void block(size_t indentation) {
if (match(TOKEN_EOL)) {
/* Begin actual blocks */
if (check(TOKEN_INDENTATION)) {
size_t currentIndentation = parser.current.length;
2020-12-26 14:39:47 +03:00
if (currentIndentation <= indentation) {
errorAtCurrent("Unexpected indentation level for new block");
}
do {
2020-12-28 06:16:44 +03:00
if (parser.current.length < currentIndentation) break;
advance(); /* Pass indentation */
declaration();
2020-12-26 14:39:47 +03:00
if (check(TOKEN_EOL)) endOfLine();
} while (check(TOKEN_INDENTATION));
2020-12-28 07:35:02 +03:00
#ifdef ENABLE_DEBUGGING
if (vm.enableDebugging) {
fprintf(stderr, "On line %d, ", (int)parser.current.line);
if (check(TOKEN_INDENTATION)) {
fprintf(stderr, "Exiting block from %d to %d\n",
(int)currentIndentation, (int)parser.current.length);
} else {
fprintf(stderr, "Exiting block from %d to something that isn't indentation.\n",
(int)currentIndentation);
}
}
#endif
} else {
errorAtCurrent("Expected indentation for block");
}
} else {
errorAtCurrent("Unsupported single-line block");
}
}
2020-12-28 05:11:50 +03:00
static void function(FunctionType type, size_t blockWidth) {
Compiler compiler;
initCompiler(&compiler, type);
2020-12-28 04:54:25 +03:00
compiler.function->chunk.filename = compiler.enclosing->function->chunk.filename;
beginScope();
consume(TOKEN_LEFT_PAREN, "Expected start of parameter list after function name.");
if (!check(TOKEN_RIGHT_PAREN)) {
do {
if (match(TOKEN_SELF)) {
if (type != TYPE_INIT && type != TYPE_METHOD) {
error("Invalid use of `self` as a function paramenter.");
}
continue;
}
current->function->arity++;
if (current->function->arity > 255) errorAtCurrent("too many function parameters");
ssize_t paramConstant = parseVariable("Expect parameter name.");
defineVariable(paramConstant);
} while (match(TOKEN_COMMA));
}
consume(TOKEN_RIGHT_PAREN, "Expected end of parameter list.");
consume(TOKEN_COLON, "Expected colon after function signature.");
block(blockWidth);
KrkFunction * function = endCompiler();
size_t ind = krk_addConstant(currentChunk(), OBJECT_VAL(function));
EMIT_CONSTANT_OP(OP_CLOSURE, ind);
for (size_t i = 0; i < function->upvalueCount; ++i) {
/* TODO: if the maximum count changes, fix the sizes for this */
emitByte(compiler.upvalues[i].isLocal ? 1 : 0);
emitByte(compiler.upvalues[i].index);
}
}
2020-12-28 05:11:50 +03:00
static void method(size_t blockWidth) {
/* This is actually "inside of a class definition", and that might mean
* arbitrary blank lines we need to accept... Sorry. */
if (check(TOKEN_EOL)) return;
/* def method(...): - just like functions; unlike Python, I'm just always
* going to assign `self` because Lox always assigns `this`; it should not
* show up in the initializer list; I may add support for it being there
* as a redundant thing, just to make more Python stuff work with changes. */
consume(TOKEN_DEF, "expected a definition, got nothing");
consume(TOKEN_IDENTIFIER, "expected method name");
size_t ind = identifierConstant(&parser.previous);
FunctionType type = TYPE_METHOD;
if (parser.previous.length == 8 && memcmp(parser.previous.start, "__init__", 8) == 0) {
type = TYPE_INIT;
}
function(type, blockWidth);
EMIT_CONSTANT_OP(OP_METHOD, ind);
}
2020-12-27 10:45:34 +03:00
static void classDeclaration() {
2020-12-28 05:11:50 +03:00
size_t blockWidth = (parser.previous.type == TOKEN_INDENTATION) ? parser.previous.length : 0;
2020-12-27 10:45:34 +03:00
advance(); /* Collect the `class` */
consume(TOKEN_IDENTIFIER, "Expected class name.");
KrkToken className = parser.previous;
2020-12-27 10:45:34 +03:00
size_t constInd = identifierConstant(&parser.previous);
declareVariable();
EMIT_CONSTANT_OP(OP_CLASS, constInd);
defineVariable(constInd);
ClassCompiler classCompiler;
classCompiler.name = parser.previous;
classCompiler.hasSuperClass = 0;
classCompiler.enclosing = currentClass;
currentClass = &classCompiler;
if (match(TOKEN_LEFT_PAREN)) {
if (match(TOKEN_IDENTIFIER)) {
variable(0);
if (identifiersEqual(&className, &parser.previous)) {
error("A class can not inherit from itself.");
}
beginScope();
addLocal(syntheticToken("super"));
defineVariable(0);
namedVariable(className, 0);
emitByte(OP_INHERIT);
classCompiler.hasSuperClass = 1;
}
consume(TOKEN_RIGHT_PAREN, "Expected closing brace after superclass.");
}
namedVariable(className, 0);
2020-12-27 10:45:34 +03:00
consume(TOKEN_COLON, "Expected colon after class");
if (match(TOKEN_EOL)) {
if (check(TOKEN_INDENTATION)) {
size_t currentIndentation = parser.current.length;
if (currentIndentation <= blockWidth) {
errorAtCurrent("Unexpected indentation level for class");
}
do {
2020-12-28 06:16:44 +03:00
if (parser.current.length < currentIndentation) break;
advance(); /* Pass the indentation */
method(currentIndentation);
if (check(TOKEN_EOL)) endOfLine();
} while (check(TOKEN_INDENTATION));
/* Exit from block */
}
} /* else empty class (and at end of file?) we'll allow it for now... */
emitByte(OP_POP);
if (classCompiler.hasSuperClass) {
endScope();
}
currentClass = currentClass->enclosing;
2020-12-27 10:45:34 +03:00
}
static void markInitialized() {
if (current->scopeDepth == 0) return;
current->locals[current->localCount - 1].depth = current->scopeDepth;
}
static void defDeclaration() {
2020-12-28 05:11:50 +03:00
size_t blockWidth = (parser.previous.type == TOKEN_INDENTATION) ? parser.previous.length : 0;
advance(); /* Collect the `def` */
ssize_t global = parseVariable("Expected function name.");
markInitialized();
function(TYPE_FUNCTION, blockWidth);
defineVariable(global);
}
2020-12-26 14:39:47 +03:00
static int emitJump(uint8_t opcode) {
emitByte(opcode);
emitBytes(0xFF, 0xFF);
return currentChunk()->count - 2;
}
static void patchJump(int offset) {
int jump = currentChunk()->count - offset - 2;
if (jump > 0xFFFF) {
error("Unsupported far jump (we'll get there)");
}
currentChunk()->code[offset] = (jump >> 8) & 0xFF;
currentChunk()->code[offset + 1] = (jump) & 0xFF;
}
static void emitLoop(int loopStart) {
emitByte(OP_LOOP);
int offset = currentChunk()->count - loopStart + 2;
if (offset > 0xFFFF) error("offset too big");
emitBytes(offset >> 8, offset);
}
static void ifStatement() {
/* Figure out what block level contains us so we can match our partner else */
2020-12-28 05:11:50 +03:00
size_t blockWidth = (parser.previous.type == TOKEN_INDENTATION) ? parser.previous.length : 0;
2020-12-26 14:39:47 +03:00
/* Collect the if token that started this statement */
advance();
/* Collect condition expression */
expression();
/* if EXPR: */
consume(TOKEN_COLON, "Expect ':' after condition.");
int thenJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
/* Start a new scope and enter a block */
beginScope();
block(blockWidth);
endScope();
int elseJump = emitJump(OP_JUMP);
patchJump(thenJump);
emitByte(OP_POP);
/* See if we have a matching else block */
if (blockWidth == 0 || (check(TOKEN_INDENTATION) && (parser.current.length == blockWidth))) {
2020-12-28 06:16:44 +03:00
/* This is complicated */
KrkToken previous;
if (blockWidth) {
previous = parser.previous;
advance();
}
2020-12-26 14:39:47 +03:00
if (match(TOKEN_ELSE)) {
/* TODO ELIF or ELSE IF */
consume(TOKEN_COLON, "Expect ':' after else.");
beginScope();
block(blockWidth);
endScope();
2020-12-28 06:16:44 +03:00
} else {
krk_ungetToken(parser.current);
parser.current = parser.previous;
if (blockWidth) {
parser.previous = previous;
}
2020-12-26 14:39:47 +03:00
}
}
patchJump(elseJump);
}
static void whileStatement() {
2020-12-28 05:11:50 +03:00
size_t blockWidth = (parser.previous.type == TOKEN_INDENTATION) ? parser.previous.length : 0;
2020-12-26 14:39:47 +03:00
advance();
int loopStart = currentChunk()->count;
expression();
consume(TOKEN_COLON, "Expect ':' after condition.");
int exitJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
beginScope();
block(blockWidth);
endScope();
emitLoop(loopStart);
patchJump(exitJump);
emitByte(OP_POP);
}
static void forStatement() {
/* I'm not sure if I want this to be more like Python or C/Lox/etc. */
2020-12-28 05:11:50 +03:00
size_t blockWidth = (parser.previous.type == TOKEN_INDENTATION) ? parser.previous.length : 0;
2020-12-26 14:39:47 +03:00
advance();
/* For now this is going to be kinda broken */
beginScope();
2020-12-28 07:35:02 +03:00
ssize_t loopInd = current->localCount;
2020-12-26 14:39:47 +03:00
varDeclaration();
2020-12-28 07:35:02 +03:00
int loopStart;
int exitJump;
2020-12-26 14:39:47 +03:00
2020-12-28 07:35:02 +03:00
if (match(TOKEN_IN)) {
defineVariable(loopInd);
2020-12-26 14:39:47 +03:00
2020-12-28 07:35:02 +03:00
KrkToken _it = syntheticToken("__loop_iter");
KrkToken _iter = syntheticToken("__iter__");
2020-12-28 05:11:50 +03:00
size_t indLoopIter = current->localCount;
2020-12-28 07:35:02 +03:00
/* __loop_iter = */
addLocal(_it);
defineVariable(indLoopIter);
/* ITERABLE.__iter__() */
2020-12-26 14:39:47 +03:00
expression();
2020-12-28 07:35:02 +03:00
ssize_t ind = identifierConstant(&_iter);
EMIT_CONSTANT_OP(OP_GET_PROPERTY, ind);
emitBytes(OP_CALL, 0);
/* assign */
EMIT_CONSTANT_OP(OP_SET_LOCAL, indLoopIter);
/* LOOP STARTS HERE */
loopStart = currentChunk()->count;
emitByte(0xFF);
/* Call the iterator */
EMIT_CONSTANT_OP(OP_GET_LOCAL, indLoopIter);
emitBytes(OP_CALL, 0);
/* Assign the result to our loop index */
EMIT_CONSTANT_OP(OP_SET_LOCAL, loopInd);
/* Get the loop iterator again */
EMIT_CONSTANT_OP(OP_GET_LOCAL, indLoopIter);
emitByte(OP_EQUAL);
emitByte(OP_NOT);
exitJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
} else {
consume(TOKEN_COMMA,"expect ,");
loopStart = currentChunk()->count;
expression(); /* condition */
exitJump = emitJump(OP_JUMP_IF_FALSE);
2020-12-26 14:39:47 +03:00
emitByte(OP_POP);
2020-12-28 07:35:02 +03:00
if (check(TOKEN_COMMA)) {
advance();
int bodyJump = emitJump(OP_JUMP);
int incrementStart = currentChunk()->count;
expression();
emitByte(OP_POP);
emitLoop(loopStart);
loopStart = incrementStart;
patchJump(bodyJump);
}
2020-12-26 14:39:47 +03:00
}
consume(TOKEN_COLON,"expect :");
block(blockWidth);
emitLoop(loopStart);
patchJump(exitJump);
emitByte(OP_POP);
endScope();
}
static void returnStatement() {
if (check(TOKEN_EOL) || check(TOKEN_EOF)) {
emitReturn();
} else {
if (current->type == TYPE_INIT) {
error("Can not return values from __init__");
}
expression();
emitByte(OP_RETURN);
}
}
static void importStatement() {
consume(TOKEN_IDENTIFIER, "Expected module name");
declareVariable();
size_t ind = identifierConstant(&parser.previous);
EMIT_CONSTANT_OP(OP_IMPORT, ind);
defineVariable(ind);
}
2020-12-26 10:53:15 +03:00
static void statement() {
2020-12-26 14:39:47 +03:00
if (check(TOKEN_EOL)) {
return; /* Meaningless blank line */
}
2020-12-26 10:53:15 +03:00
if (match(TOKEN_PRINT)) {
printStatement();
2020-12-26 14:39:47 +03:00
} else if (check(TOKEN_IF)) {
/*
* We check rather than match because we need to look at the indentation
* token that came before this (if it was one) to figure out what block
* indentation level we're at, so that we can match our companion else
* and make sure it's not the else for a higher if block.
*
* TODO: Are there other things where we want to do this?
*/
ifStatement();
} else if (check(TOKEN_WHILE)) {
whileStatement();
} else if (check(TOKEN_FOR)) {
forStatement();
} else if (match(TOKEN_RETURN)) {
returnStatement();
} else if (match(TOKEN_IMPORT)) {
importStatement();
2020-12-26 10:53:15 +03:00
} else {
expressionStatement();
}
}
static void grouping(int canAssign) {
expression();
consume(TOKEN_RIGHT_PAREN, "Expect ')' after expression.");
}
2020-12-26 10:53:15 +03:00
static void unary(int canAssign) {
KrkTokenType operatorType = parser.previous.type;
parsePrecedence(PREC_UNARY);
switch (operatorType) {
case TOKEN_MINUS: emitByte(OP_NEGATE); break;
/* These are equivalent */
case TOKEN_BANG:
case TOKEN_NOT:
emitByte(OP_NOT);
break;
default: return;
}
}
2020-12-26 10:53:15 +03:00
static void string(int canAssign) {
2020-12-28 05:11:50 +03:00
emitConstant(OBJECT_VAL(krk_copyString(parser.previous.start + 1, parser.previous.length - 2)));
}
2020-12-27 04:58:36 +03:00
/* TODO
static void codepoint(int canAssign) {
// Convert utf8 bytes to single codepoint; error on multiple codepoints.
// Emit as constant Integer value? Or as separate Codepoint value?
// The latter could add to strings as utf8 bytes, but compare to
// Integers as the numerical value...
}
*/
static size_t addUpvalue(Compiler * compiler, ssize_t index, int isLocal) {
size_t upvalueCount = compiler->function->upvalueCount;
for (size_t i = 0; i < upvalueCount; ++i) {
Upvalue * upvalue = &compiler->upvalues[i];
2020-12-28 05:11:50 +03:00
if ((ssize_t)upvalue->index == index && upvalue->isLocal == isLocal) {
return i;
}
}
if (upvalueCount == MAX_LOCALS) {
error("Too many closure variables in function.");
return 0;
}
compiler->upvalues[upvalueCount].isLocal = isLocal;
compiler->upvalues[upvalueCount].index = index;
return compiler->function->upvalueCount++;
}
static ssize_t resolveUpvalue(Compiler * compiler, KrkToken * name) {
if (compiler->enclosing == NULL) return -1;
ssize_t local = resolveLocal(compiler->enclosing, name);
if (local != -1) {
compiler->enclosing->locals[local].isCaptured = 1;
return addUpvalue(compiler, local, 1);
}
ssize_t upvalue = resolveUpvalue(compiler->enclosing, name);
if (upvalue != -1) {
return addUpvalue(compiler, upvalue, 0);
}
return -1;
}
#define DO_VARIABLE(opset,opget) do { \
if (canAssign && match(TOKEN_EQUAL)) { \
expression(); \
EMIT_CONSTANT_OP(opset, arg); \
} else { \
EMIT_CONSTANT_OP(opget, arg); \
} } while (0)
2020-12-26 10:53:15 +03:00
static void namedVariable(KrkToken name, int canAssign) {
ssize_t arg = resolveLocal(current, &name);
if (arg != -1) {
DO_VARIABLE(OP_SET_LOCAL, OP_GET_LOCAL);
} else if ((arg = resolveUpvalue(current, &name)) != -1) {
DO_VARIABLE(OP_SET_UPVALUE, OP_GET_UPVALUE);
2020-12-26 10:53:15 +03:00
} else {
arg = identifierConstant(&name);
DO_VARIABLE(OP_SET_GLOBAL, OP_GET_GLOBAL);
2020-12-26 10:53:15 +03:00
}
}
#undef DO_VARIABLE
2020-12-26 10:53:15 +03:00
static void variable(int canAssign) {
namedVariable(parser.previous, canAssign);
}
static void self(int canAssign) {
if (currentClass == NULL) {
error("Invalid reference to `self` outside of a class method.");
return;
}
variable(0);
}
static void super_(int canAssign) {
if (currentClass == NULL) {
error("Invalid reference to `super` outside of a class.");
} else if (!currentClass->hasSuperClass) {
error("Invalid reference to `super` from a base class.");
}
consume(TOKEN_LEFT_PAREN, "Expected `super` to be called.");
consume(TOKEN_RIGHT_PAREN, "`super` can not take arguments.");
consume(TOKEN_DOT, "Expected a field of `super()` to be referenced.");
consume(TOKEN_IDENTIFIER, "Expected a field name.");
size_t ind = identifierConstant(&parser.previous);
namedVariable(syntheticToken("self"), 0);
namedVariable(syntheticToken("super"), 0);
EMIT_CONSTANT_OP(OP_GET_SUPER, ind);
}
ParseRule rules[] = {
[TOKEN_LEFT_PAREN] = {grouping, call, PREC_CALL},
[TOKEN_RIGHT_PAREN] = {NULL, NULL, PREC_NONE},
[TOKEN_LEFT_BRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_RIGHT_BRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_LEFT_SQUARE] = {NULL, get_, PREC_CALL},
[TOKEN_RIGHT_SQUARE] = {NULL, NULL, PREC_NONE},
[TOKEN_COLON] = {NULL, NULL, PREC_NONE},
[TOKEN_COMMA] = {NULL, NULL, PREC_NONE},
2020-12-27 10:45:34 +03:00
[TOKEN_DOT] = {NULL, dot, PREC_CALL},
[TOKEN_MINUS] = {unary, binary, PREC_TERM},
[TOKEN_PLUS] = {NULL, binary, PREC_TERM},
[TOKEN_SEMICOLON] = {NULL, NULL, PREC_NONE},
[TOKEN_SOLIDUS] = {NULL, binary, PREC_FACTOR},
[TOKEN_ASTERISK] = {NULL, binary, PREC_FACTOR},
[TOKEN_BANG] = {unary, NULL, PREC_NONE},
[TOKEN_BANG_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_EQUAL] = {NULL, NULL, PREC_NONE},
[TOKEN_EQUAL_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_GREATER] = {NULL, binary, PREC_COMPARISON},
[TOKEN_GREATER_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS_EQUAL] = {NULL, binary, PREC_COMPARISON},
2020-12-26 10:53:15 +03:00
[TOKEN_IDENTIFIER] = {variable, NULL, PREC_NONE},
[TOKEN_STRING] = {string, NULL, PREC_NONE},
[TOKEN_NUMBER] = {number, NULL, PREC_NONE},
2020-12-27 04:58:36 +03:00
[TOKEN_CODEPOINT] = {NULL, NULL, PREC_NONE}, /* TODO */
2020-12-26 14:39:47 +03:00
[TOKEN_AND] = {NULL, and_, PREC_AND},
[TOKEN_CLASS] = {NULL, NULL, PREC_NONE},
[TOKEN_ELSE] = {NULL, NULL, PREC_NONE},
[TOKEN_FALSE] = {literal, NULL, PREC_NONE},
[TOKEN_FOR] = {NULL, NULL, PREC_NONE},
[TOKEN_DEF] = {NULL, NULL, PREC_NONE},
[TOKEN_IF] = {NULL, NULL, PREC_NONE},
[TOKEN_IN] = {NULL, NULL, PREC_NONE},
[TOKEN_LET] = {NULL, NULL, PREC_NONE},
[TOKEN_NONE] = {literal, NULL, PREC_NONE},
[TOKEN_NOT] = {unary, NULL, PREC_NONE},
2020-12-26 14:39:47 +03:00
[TOKEN_OR] = {NULL, or_, PREC_OR},
[TOKEN_PRINT] = {NULL, NULL, PREC_NONE},
[TOKEN_RETURN] = {NULL, NULL, PREC_NONE},
[TOKEN_SELF] = {self, NULL, PREC_NONE},
[TOKEN_SUPER] = {super_, NULL, PREC_NONE},
[TOKEN_TRUE] = {literal, NULL, PREC_NONE},
[TOKEN_WHILE] = {NULL, NULL, PREC_NONE},
/* This is going to get interesting */
[TOKEN_INDENTATION] = {NULL, NULL, PREC_NONE},
[TOKEN_ERROR] = {NULL, NULL, PREC_NONE},
[TOKEN_EOF] = {NULL, NULL, PREC_NONE},
};
static void parsePrecedence(Precedence precedence) {
advance();
ParseFn prefixRule = getRule(parser.previous.type)->prefix;
if (prefixRule == NULL) {
error("expect expression");
return;
}
2020-12-26 10:53:15 +03:00
int canAssign = precedence <= PREC_ASSIGNMENT;
prefixRule(canAssign);
while (precedence <= getRule(parser.current.type)->precedence) {
advance();
ParseFn infixRule = getRule(parser.previous.type)->infix;
2020-12-26 10:53:15 +03:00
infixRule(canAssign);
}
if (canAssign && match(TOKEN_EQUAL)) {
error("invalid assignment target");
}
}
static ssize_t identifierConstant(KrkToken * name) {
2020-12-28 05:11:50 +03:00
return krk_addConstant(currentChunk(), OBJECT_VAL(krk_copyString(name->start, name->length)));
2020-12-26 10:53:15 +03:00
}
static ssize_t resolveLocal(Compiler * compiler, KrkToken * name) {
for (ssize_t i = compiler->localCount - 1; i >= 0; i--) {
Local * local = &compiler->locals[i];
if (identifiersEqual(name, &local->name)) {
if (local->depth == -1) {
error("can not initialize value recursively (are you shadowing something?)");
}
return i;
}
}
return -1;
}
static void addLocal(KrkToken name) {
if (current->localCount == MAX_LOCALS) {
error("too many locals");
return;
}
Local * local = &current->locals[current->localCount++];
local->name = name;
local->depth = -1;
local->isCaptured = 0;
}
static void declareVariable() {
if (current->scopeDepth == 0) return;
KrkToken * name = &parser.previous;
/* Detect duplicate definition */
for (ssize_t i = current->localCount - 1; i >= 0; i--) {
Local * local = &current->locals[i];
2020-12-28 05:11:50 +03:00
if (local->depth != -1 && local->depth < (ssize_t)current->scopeDepth) break;
if (identifiersEqual(name, &local->name)) error("Duplicate definition");
}
addLocal(*name);
}
static ssize_t parseVariable(const char * errorMessage) {
2020-12-26 10:53:15 +03:00
consume(TOKEN_IDENTIFIER, errorMessage);
declareVariable();
if (current->scopeDepth > 0) return 0;
2020-12-26 10:53:15 +03:00
return identifierConstant(&parser.previous);
}
static void defineVariable(size_t global) {
if (current->scopeDepth > 0) {
markInitialized();
return;
}
2020-12-26 10:53:15 +03:00
EMIT_CONSTANT_OP(OP_DEFINE_GLOBAL, global);
}
static uint8_t argumentList() {
uint8_t argCount = 0;
if (!check(TOKEN_RIGHT_PAREN)) {
do {
expression();
if (argCount == 255) error("Too many arguments to function."); // Need long call...
argCount++;
} while (match(TOKEN_COMMA));
}
consume(TOKEN_RIGHT_PAREN, "Expected ')' after arguments.");
return argCount;
}
2020-12-26 14:39:47 +03:00
static void and_(int canAssign) {
int endJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
parsePrecedence(PREC_AND);
patchJump(endJump);
}
static void or_(int canAssign) {
int endJump = emitJump(OP_JUMP_IF_TRUE);
emitByte(OP_POP);
parsePrecedence(PREC_OR);
patchJump(endJump);
}
static ParseRule * getRule(KrkTokenType type) {
return &rules[type];
}
2020-12-28 04:54:25 +03:00
KrkFunction * krk_compile(const char * src, int newScope, char * fileName) {
krk_initScanner(src);
Compiler compiler;
initCompiler(&compiler, TYPE_MODULE);
2020-12-28 05:11:50 +03:00
compiler.function->chunk.filename = krk_copyString(fileName, strlen(fileName));
if (newScope) beginScope();
parser.hadError = 0;
parser.panicMode = 0;
advance();
2020-12-26 10:53:15 +03:00
while (!match(TOKEN_EOF)) {
declaration();
2020-12-26 14:39:47 +03:00
if (check(TOKEN_EOL)) advance();
2020-12-26 10:53:15 +03:00
}
KrkFunction * function = endCompiler();
return parser.hadError ? NULL : function;
}
void krk_markCompilerRoots() {
Compiler * compiler = current;
while (compiler != NULL) {
krk_markObject((KrkObj*)compiler->function);
compiler = compiler->enclosing;
}
}