toaruos/modules/e1000.c

600 lines
16 KiB
C

/**
* @file kernel/net/e1000.c
* @brief Intel Gigabit Ethernet device driver
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2017-2021 K. Lange
*
* @ref https://www.intel.com/content/dam/www/public/us/en/documents/manuals/pcie-gbe-controllers-open-source-manual.pdf
*/
#include <kernel/types.h>
#include <kernel/string.h>
#include <kernel/printf.h>
#include <kernel/process.h>
#include <kernel/pci.h>
#include <kernel/mmu.h>
#include <kernel/pipe.h>
#include <kernel/list.h>
#include <kernel/spinlock.h>
#include <kernel/time.h>
#include <kernel/vfs.h>
#include <kernel/mod/net.h>
#include <kernel/net/netif.h>
#include <kernel/net/eth.h>
#include <kernel/module.h>
#include <kernel/procfs.h>
#include <errno.h>
#include <kernel/arch/x86_64/irq.h>
#include <kernel/net/e1000.h>
#include <sys/socket.h>
#include <net/if.h>
#define INTS (ICR_LSC | ICR_RXO | ICR_RXT0 | ICR_TXQE | ICR_TXDW | ICR_ACK | ICR_RXDMT0 | ICR_SRPD)
struct e1000_nic {
struct EthernetDevice eth;
uint32_t pci_device;
uint16_t deviceid;
uintptr_t mmio_addr;
int irq_number;
int has_eeprom;
int rx_index;
int tx_index;
int link_status;
spin_lock_t tx_lock;
uint8_t * rx_virt[E1000_NUM_RX_DESC];
uint8_t * tx_virt[E1000_NUM_TX_DESC];
struct e1000_rx_desc * rx;
struct e1000_tx_desc * tx;
uintptr_t rx_phys;
uintptr_t tx_phys;
int configured;
process_t * queuer;
process_t * processor;
netif_counters_t counts;
};
static int device_count = 0;
static struct e1000_nic * devices[32] = {NULL};
static uint32_t mmio_read32(uintptr_t addr) {
return *((volatile uint32_t*)(addr));
}
static void mmio_write32(uintptr_t addr, uint32_t val) {
(*((volatile uint32_t*)(addr))) = val;
}
static void write_command(struct e1000_nic * device, uint16_t addr, uint32_t val) {
mmio_write32(device->mmio_addr + addr, val);
}
static uint32_t read_command(struct e1000_nic * device, uint16_t addr) {
return mmio_read32(device->mmio_addr + addr);
}
static void delay_yield(size_t subticks) {
unsigned long s, ss;
relative_time(0, subticks, &s, &ss);
sleep_until((process_t *)this_core->current_process, s, ss);
switch_task(0);
}
static int eeprom_detect(struct e1000_nic * device) {
/* Definitely not */
if (device->deviceid == 0x10d3) return 0;
write_command(device, E1000_REG_EEPROM, 1);
for (int i = 0; i < 10000 && !device->has_eeprom; ++i) {
uint32_t val = read_command(device, E1000_REG_EEPROM);
if (val & 0x10) device->has_eeprom = 1;
}
return 0;
}
static uint16_t eeprom_read(struct e1000_nic * device, uint8_t addr) {
uint32_t temp = 0;
write_command(device, E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
while (!((temp = read_command(device, E1000_REG_EEPROM)) & (1 << 4)));
return (uint16_t)((temp >> 16) & 0xFFFF);
}
static void write_mac(struct e1000_nic * device) {
uint32_t low, high;
memcpy(&low, &device->eth.mac[0], 4);
memcpy(&high,&device->eth.mac[4], 2);
memset((uint8_t *)&high + 2, 0, 2);
high |= 0x80000000;
write_command(device, E1000_REG_RXADDR + 0, low);
write_command(device, E1000_REG_RXADDR + 4, high);
}
static void read_mac(struct e1000_nic * device) {
if (device->has_eeprom) {
uint32_t t;
t = eeprom_read(device, 0);
device->eth.mac[0] = t & 0xFF;
device->eth.mac[1] = t >> 8;
t = eeprom_read(device, 1);
device->eth.mac[2] = t & 0xFF;
device->eth.mac[3] = t >> 8;
t = eeprom_read(device, 2);
device->eth.mac[4] = t & 0xFF;
device->eth.mac[5] = t >> 8;
} else {
uint32_t mac_addr_low = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR);
uint32_t mac_addr_high = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR + 4);
device->eth.mac[0] = (mac_addr_low >> 0 ) & 0xFF;
device->eth.mac[1] = (mac_addr_low >> 8 ) & 0xFF;
device->eth.mac[2] = (mac_addr_low >> 16) & 0xFF;
device->eth.mac[3] = (mac_addr_low >> 24) & 0xFF;
device->eth.mac[4] = (mac_addr_high>> 0 ) & 0xFF;
device->eth.mac[5] = (mac_addr_high>> 8 ) & 0xFF;
}
}
static void e1000_handle(struct e1000_nic * nic, uint32_t status) {
write_command(nic, E1000_REG_ICR, status);
if (!nic->configured) {
return;
}
if (status & ICR_LSC) {
nic->link_status= (read_command(nic, E1000_REG_STATUS) & (1 << 1));
}
make_process_ready(nic->queuer);
}
static void e1000_queuer(void * data) {
struct e1000_nic * nic = data;
int head = read_command(nic, E1000_REG_RXDESCHEAD);
int budget = 8;
while (1) {
int processed = 0;
if (head == nic->rx_index) {
head = read_command(nic, E1000_REG_RXDESCHEAD);
}
if (head != nic->rx_index) {
while ((nic->rx[nic->rx_index].status & 0x01) && (processed < budget)) {
int i = nic->rx_index;
if (!(nic->rx[i].errors & (0x97))) {
nic->counts.rx_count++;
nic->counts.rx_bytes += nic->rx[i].length;
net_eth_handle((void*)nic->rx_virt[i], nic->eth.device_node, nic->rx[i].length);
} else {
printf("error bits set in packet: %x\n", nic->rx[i].errors);
}
processed++;
nic->rx[i].status = 0;
if (++nic->rx_index == E1000_NUM_RX_DESC) {
nic->rx_index = 0;
}
if (nic->rx_index == head) {
head = read_command(nic, E1000_REG_RXDESCHEAD);
if (nic->rx_index == head) break;
}
write_command(nic, E1000_REG_RXDESCTAIL, nic->rx_index);
read_command(nic, E1000_REG_STATUS);
}
}
if (processed == 0) {
switch_task(0);
} else {
if (this_core->cpu_id == 0) switch_task(0);
}
}
}
static int irq_handler(struct regs *r) {
int irq = r->int_no - 32;
int handled = 0;
for (int i = 0; i < device_count; ++i) {
if (devices[i]->irq_number == irq) {
uint32_t status = read_command(devices[i], E1000_REG_ICR);
if (status) {
e1000_handle(devices[i], status);
if (!handled) {
handled = 1;
irq_ack(irq);
}
}
}
}
return handled;
}
static int tx_full(struct e1000_nic * device, int tx_tail, int tx_head) {
if (tx_tail == tx_head) return 0;
if (device->tx_index == tx_head) return 1;
if (((device->tx_index + 1) & E1000_NUM_TX_DESC) == tx_head) return 1;
return 0;
}
static void send_packet(struct e1000_nic * device, uint8_t* payload, size_t payload_size) {
spin_lock(device->tx_lock);
int tx_tail = read_command(device, E1000_REG_TXDESCTAIL);
int tx_head = read_command(device, E1000_REG_TXDESCHEAD);
if (tx_full(device, tx_tail, tx_head)) {
int timeout = 1000;
do {
spin_unlock(device->tx_lock);
delay_yield(10000);
timeout--;
if (timeout == 0) {
printf("e1000: wait for tx timed out, giving up\n");
return;
}
spin_lock(device->tx_lock);
tx_tail = read_command(device, E1000_REG_TXDESCTAIL);
tx_head = read_command(device, E1000_REG_TXDESCHEAD);
} while (tx_full(device, tx_tail, tx_head));
}
memcpy(device->tx_virt[device->tx_index], payload, payload_size);
device->tx[device->tx_index].length = payload_size;
device->tx[device->tx_index].cmd = CMD_EOP | CMD_IFCS | CMD_RS; //| CMD_RPS;
device->tx[device->tx_index].status = 0;
device->counts.tx_count++;
device->counts.tx_bytes += payload_size;
if (++device->tx_index == E1000_NUM_TX_DESC) {
device->tx_index = 0;
}
write_command(device, E1000_REG_TXDESCTAIL, device->tx_index);
read_command(device, E1000_REG_STATUS);
spin_unlock(device->tx_lock);
}
static void init_rx(struct e1000_nic * device) {
write_command(device, E1000_REG_RXDESCLO, device->rx_phys);
write_command(device, E1000_REG_RXDESCHI, 0);
write_command(device, E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct e1000_rx_desc));
write_command(device, E1000_REG_RXDESCHEAD, 0);
write_command(device, E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
device->rx_index = 0;
write_command(device, E1000_REG_RCTRL,
RCTL_EN |
(1 << 2) | /* store bad packets */
(1 << 4) | /* multicast promiscuous */
(1 << 15) | /* broadcast accept */
(1 << 25) | /* Extended size... */
(3 << 16) | /* 4096 */
(1 << 26) /* strip CRC */
);
}
static void init_tx(struct e1000_nic * device) {
write_command(device, E1000_REG_TXDESCLO, device->tx_phys);
write_command(device, E1000_REG_TXDESCHI, 0);
write_command(device, E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct e1000_tx_desc));
write_command(device, E1000_REG_TXDESCHEAD, 0);
write_command(device, E1000_REG_TXDESCTAIL, 0);
device->tx_index = 0;
uint32_t tctl = read_command(device, E1000_REG_TCTRL);
/* Collision threshold */
tctl &= ~(0xFF << 4);
tctl |= (15 << 4);
/* Turn it on */
tctl |= TCTL_EN;
tctl |= TCTL_PSP;
tctl |= (1 << 24); /* retransmit on late collision */
write_command(device, E1000_REG_TCTRL, tctl);
}
static int ioctl_e1000(fs_node_t * node, unsigned long request, void * argp) {
struct e1000_nic * nic = node->device;
switch (request) {
case SIOCGIFHWADDR:
/* fill argp with mac */
memcpy(argp, nic->eth.mac, 6);
return 0;
case SIOCGIFADDR:
if (nic->eth.ipv4_addr == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_addr, sizeof(nic->eth.ipv4_addr));
return 0;
case SIOCSIFADDR:
memcpy(&nic->eth.ipv4_addr, argp, sizeof(nic->eth.ipv4_addr));
return 0;
case SIOCGIFNETMASK:
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_subnet, sizeof(nic->eth.ipv4_subnet));
return 0;
case SIOCSIFNETMASK:
memcpy(&nic->eth.ipv4_subnet, argp, sizeof(nic->eth.ipv4_subnet));
return 0;
case SIOCGIFGATEWAY:
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_gateway, sizeof(nic->eth.ipv4_gateway));
return 0;
case SIOCSIFGATEWAY:
memcpy(&nic->eth.ipv4_gateway, argp, sizeof(nic->eth.ipv4_gateway));
net_arp_ask(nic->eth.ipv4_gateway, node);
return 0;
case SIOCGIFADDR6:
return -ENOENT;
case SIOCSIFADDR6:
memcpy(&nic->eth.ipv6_addr, argp, sizeof(nic->eth.ipv6_addr));
return 0;
case SIOCGIFFLAGS: {
uint32_t * flags = argp;
*flags = IFF_RUNNING;
if (nic->link_status) *flags |= IFF_UP;
/* We turn these on in our init_tx */
*flags |= IFF_BROADCAST;
*flags |= IFF_MULTICAST;
return 0;
}
case SIOCGIFMTU: {
uint32_t * mtu = argp;
*mtu = nic->eth.mtu;
return 0;
}
case SIOCGIFCOUNTS: {
memcpy(argp, &nic->counts, sizeof(netif_counters_t));
return 0;
}
default:
return -EINVAL;
}
}
static ssize_t write_e1000(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) {
struct e1000_nic * nic = node->device;
/* write packet */
send_packet(nic, buffer, size);
return size;
}
static ssize_t e1000_debug_func(fs_node_t * node, off_t offset, size_t size, uint8_t * buffer) {
char * buf = malloc(4096);
char * out = buf;
for (int i = 0; i < device_count; ++i) {
struct e1000_nic * e1000_debug_nic = devices[i];
uint32_t creg = read_command(e1000_debug_nic, E1000_REG_CTRL);
uint32_t sreg = read_command(e1000_debug_nic, E1000_REG_STATUS);
int rx_head = read_command(e1000_debug_nic, E1000_REG_RXDESCHEAD);
int rx_tail = read_command(e1000_debug_nic, E1000_REG_RXDESCTAIL);
int tx_head = read_command(e1000_debug_nic, E1000_REG_TXDESCHEAD);
int tx_tail = read_command(e1000_debug_nic, E1000_REG_TXDESCTAIL);
out += snprintf(out, 4095,
"Device %d\n"
"Ctrl reg:\t%#x\n"
"Status reg:\t%#x\n"
"rx head/tail:\t%d %d\n"
"tx head/tail:\t%d %d\n",
i,
creg,
sreg,
rx_head, rx_tail,
tx_head, tx_tail
);
}
size_t _bsize = strlen(buf);
if ((size_t)offset > _bsize) {
free(buf);
return 0;
}
if (size > _bsize - (size_t)offset) size = _bsize - offset;
memcpy(buffer, buf + offset, size);
free(buf);
return size;
}
static struct procfs_entry e1000_debug = {
0,
"e1000",
e1000_debug_func,
};
static void ints_off(struct e1000_nic * nic) {
write_command(nic, E1000_REG_IMC, 0xFFFFFFFF);
write_command(nic, E1000_REG_ICR, 0xFFFFFFFF);
read_command(nic, E1000_REG_STATUS);
}
static void e1000_init(struct e1000_nic * nic) {
uint32_t e1000_device_pci = nic->pci_device;
nic->rx_phys = mmu_allocate_n_frames(2) << 12;
nic->rx = mmu_map_mmio_region(nic->rx_phys, 8192);
nic->tx_phys = mmu_allocate_n_frames(2) << 12;
nic->tx = mmu_map_mmio_region(nic->tx_phys, 8192);
memset(nic->rx, 0, sizeof(struct e1000_rx_desc) * E1000_NUM_RX_DESC);
memset(nic->tx, 0, sizeof(struct e1000_tx_desc) * E1000_NUM_TX_DESC);
/* Allocate buffers */
for (int i = 0; i < E1000_NUM_RX_DESC; ++i) {
nic->rx[i].addr = mmu_allocate_a_frame() << 12;
nic->rx_virt[i] = mmu_map_mmio_region(nic->rx[i].addr, 4096);
mmu_frame_map_address(mmu_get_page((uintptr_t)nic->rx_virt[i],0),MMU_FLAG_WRITABLE|MMU_FLAG_WC,nic->rx[i].addr);
nic->rx[i].status = 0;
}
for (int i = 0; i < E1000_NUM_TX_DESC; ++i) {
nic->tx[i].addr = mmu_allocate_a_frame() << 12;
nic->tx_virt[i] = mmu_map_mmio_region(nic->tx[i].addr, 4096);
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->tx_virt[i],0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
memset(nic->tx_virt[i], 0, 4096);
nic->tx[i].status = 0;
nic->tx[i].cmd = (1 << 0);
}
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
command_reg |= (1 << 2);
command_reg |= (1 << 0);
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
delay_yield(10000);
/* Is this size enough? */
uint32_t initial_bar = pci_read_field(e1000_device_pci, PCI_BAR0, 4);
nic->mmio_addr = (uintptr_t)mmu_map_mmio_region(initial_bar, 0x8000);
eeprom_detect(nic);
read_mac(nic);
write_mac(nic);
#define CTRL_PHY_RST (1UL << 31UL)
#define CTRL_RST (1UL << 26UL)
#define CTRL_SLU (1UL << 6UL)
#define CTRL_LRST (1UL << 3UL)
nic->irq_number = pci_get_interrupt(e1000_device_pci);
irq_install_handler(nic->irq_number, irq_handler, nic->eth.if_name);
/* Disable interrupts */
ints_off(nic);
/* Turn off receive + transmit */
write_command(nic, E1000_REG_RCTRL, 0);
write_command(nic, E1000_REG_TCTRL, TCTL_PSP);
read_command(nic, E1000_REG_STATUS);
delay_yield(10000);
/* Reset everything */
uint32_t ctrl = read_command(nic, E1000_REG_CTRL);
ctrl |= CTRL_RST;
write_command(nic, E1000_REG_CTRL, ctrl);
delay_yield(20000);
/* Turn off interrupts _again_ */
ints_off(nic);
/* Recommended flow control settings? */
write_command(nic, 0x0028, 0x002C8001);
write_command(nic, 0x002c, 0x0100);
write_command(nic, 0x0030, 0x8808);
write_command(nic, 0x0170, 0xFFFF);
/* Link up */
uint32_t status = read_command(nic, E1000_REG_CTRL);
status |= CTRL_SLU;
status |= (2 << 8); /* Speed to gigabit... */
status &= ~CTRL_LRST;
status &= ~CTRL_PHY_RST;
write_command(nic, E1000_REG_CTRL, status);
/* Clear statistical counters */
for (int i = 0; i < 128; ++i) {
write_command(nic, 0x5200 + i * 4, 0);
}
for (int i = 0; i < 64; ++i) {
read_command(nic, 0x4000 + i * 4);
}
init_rx(nic);
init_tx(nic);
write_command(nic, E1000_REG_RDTR, 0);
write_command(nic, E1000_REG_ITR, 500);
read_command(nic, E1000_REG_STATUS);
nic->link_status = (read_command(nic, E1000_REG_STATUS) & (1 << 1));
nic->eth.device_node = calloc(sizeof(fs_node_t),1);
snprintf(nic->eth.device_node->name, 100, "%s", nic->eth.if_name);
nic->eth.device_node->flags = FS_BLOCKDEVICE; /* NETDEVICE? */
nic->eth.device_node->mask = 0666; /* temporary; shouldn't be doing this with these device files */
nic->eth.device_node->ioctl = ioctl_e1000;
nic->eth.device_node->write = write_e1000;
nic->eth.device_node->device = nic;
nic->eth.mtu = 1500; /* guess */
net_add_interface(nic->eth.if_name, nic->eth.device_node);
char worker_name[34];
snprintf(worker_name, 33, "[%s]", nic->eth.if_name);
nic->queuer = spawn_worker_thread(e1000_queuer, worker_name, nic);
nic->configured = 1;
/* Twiddle interrupts */
write_command(nic, E1000_REG_IMS, INTS);
delay_yield(10000);
}
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * found) {
if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea || deviceid == 0x10d3)) {
/* Allocate a device */
struct e1000_nic * nic = calloc(1,sizeof(struct e1000_nic));
nic->pci_device = device;
nic->deviceid = deviceid;
devices[device_count++] = nic;
snprintf(nic->eth.if_name, 31,
"enp%ds%d",
(int)pci_extract_bus(device),
(int)pci_extract_slot(device));
e1000_init(nic);
*(int*)found = 1;
}
}
static int e1000_install(int argc, char * argv[]) {
uint32_t found = 0;
pci_scan(&find_e1000, -1, &found);
if (!found) {
/* TODO: Clean up? Remove ourselves? */
return -ENODEV;
}
procfs_install(&e1000_debug);
return 0;
}
static int fini(void) {
/* TODO: Uninstall device */
return 0;
}
struct Module metadata = {
.name = "e1000",
.init = e1000_install,
.fini = fini,
};