toaruos/kernel/arch/x86_64/idt.c

694 lines
21 KiB
C

/**
* @file kernel/arch/x86_64/idt.c
* @brief x86-64 Interrupt Descriptor Table management
*
* This is the C side of all interrupt handling. See
* also @ref irq.S which has the assembly entrypoints.
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2021 K. Lange
*/
#include <kernel/types.h>
#include <kernel/string.h>
#include <kernel/printf.h>
#include <kernel/vfs.h>
#include <kernel/version.h>
#include <kernel/process.h>
#include <kernel/signal.h>
#include <kernel/misc.h>
#include <kernel/time.h>
#include <kernel/ptrace.h>
#include <kernel/hashmap.h>
#include <kernel/module.h>
#include <kernel/ksym.h>
#include <kernel/mmu.h>
#include <kernel/syscall.h>
#include <sys/time.h>
#include <sys/utsname.h>
#include <sys/ptrace.h>
#include <kernel/arch/x86_64/ports.h>
#include <kernel/arch/x86_64/pml.h>
#include <kernel/arch/x86_64/regs.h>
#include <kernel/arch/x86_64/irq.h>
static struct idt_pointer idtp;
static idt_entry_t idt[256];
/**
* @brief Initialize a gate, since there's some address swizzling involved...
*/
void idt_set_gate(uint8_t num, interrupt_handler_t handler, uint16_t selector, uint8_t flags, int userspace) {
uintptr_t base = (uintptr_t)handler;
idt[num].base_low = (base & 0xFFFF);
idt[num].base_mid = (base >> 16) & 0xFFFF;
idt[num].base_high = (base >> 32) & 0xFFFFFFFF;
idt[num].selector = selector;
idt[num].zero = 0;
idt[num].pad = 0;
idt[num].flags = flags | (userspace ? 0x60 : 0);
}
/**
* @brief Initializes the IDT and sets up gates for all interrupts.
*/
void idt_install(void) {
idtp.limit = sizeof(idt);
idtp.base = (uintptr_t)&idt;
/** ISRs */
idt_set_gate(0, _isr0, 0x08, 0x8E, 0);
idt_set_gate(1, _isr1, 0x08, 0x8E, 0);
idt_set_gate(2, _isr2, 0x08, 0x8E, 0);
idt_set_gate(3, _isr3, 0x08, 0x8E, 0);
idt_set_gate(4, _isr4, 0x08, 0x8E, 0);
idt_set_gate(5, _isr5, 0x08, 0x8E, 0);
idt_set_gate(6, _isr6, 0x08, 0x8E, 0);
idt_set_gate(7, _isr7, 0x08, 0x8E, 0);
idt_set_gate(8, _isr8, 0x08, 0x8E, 0);
idt_set_gate(9, _isr9, 0x08, 0x8E, 0);
idt_set_gate(10, _isr10, 0x08, 0x8E, 0);
idt_set_gate(11, _isr11, 0x08, 0x8E, 0);
idt_set_gate(12, _isr12, 0x08, 0x8E, 0);
idt_set_gate(13, _isr13, 0x08, 0x8E, 0);
idt_set_gate(14, _isr14, 0x08, 0x8E, 0);
idt_set_gate(15, _isr15, 0x08, 0x8E, 0);
idt_set_gate(16, _isr16, 0x08, 0x8E, 0);
idt_set_gate(17, _isr17, 0x08, 0x8E, 0);
idt_set_gate(18, _isr18, 0x08, 0x8E, 0);
idt_set_gate(19, _isr19, 0x08, 0x8E, 0);
idt_set_gate(20, _isr20, 0x08, 0x8E, 0);
idt_set_gate(21, _isr21, 0x08, 0x8E, 0);
idt_set_gate(22, _isr22, 0x08, 0x8E, 0);
idt_set_gate(23, _isr23, 0x08, 0x8E, 0);
idt_set_gate(24, _isr24, 0x08, 0x8E, 0);
idt_set_gate(25, _isr25, 0x08, 0x8E, 0);
idt_set_gate(26, _isr26, 0x08, 0x8E, 0);
idt_set_gate(27, _isr27, 0x08, 0x8E, 0);
idt_set_gate(28, _isr28, 0x08, 0x8E, 0);
idt_set_gate(29, _isr29, 0x08, 0x8E, 0);
idt_set_gate(30, _isr30, 0x08, 0x8E, 0);
idt_set_gate(31, _isr31, 0x08, 0x8E, 0);
idt_set_gate(32, _irq0, 0x08, 0x8E, 0);
idt_set_gate(33, _irq1, 0x08, 0x8E, 0);
idt_set_gate(34, _irq2, 0x08, 0x8E, 0);
idt_set_gate(35, _irq3, 0x08, 0x8E, 0);
idt_set_gate(36, _irq4, 0x08, 0x8E, 0);
idt_set_gate(37, _irq5, 0x08, 0x8E, 0);
idt_set_gate(38, _irq6, 0x08, 0x8E, 0);
idt_set_gate(39, _irq7, 0x08, 0x8E, 0);
idt_set_gate(40, _irq8, 0x08, 0x8E, 0);
idt_set_gate(41, _irq9, 0x08, 0x8E, 0);
idt_set_gate(42, _irq10, 0x08, 0x8E, 0);
idt_set_gate(43, _irq11, 0x08, 0x8E, 0);
idt_set_gate(44, _irq12, 0x08, 0x8E, 0);
idt_set_gate(45, _irq13, 0x08, 0x8E, 0);
idt_set_gate(46, _irq14, 0x08, 0x8E, 0);
idt_set_gate(47, _irq15, 0x08, 0x8E, 0);
idt_set_gate(123, _isr123, 0x08, 0x8E, 0); /* Clock interrupt for other processors */
idt_set_gate(124, _isr124, 0x08, 0x8E, 0); /* Bad TLB shootdown. */
idt_set_gate(125, _isr125, 0x08, 0x8E, 0); /* Halts everyone. */
idt_set_gate(126, _isr126, 0x08, 0x8E, 0); /* Does nothing, used to exit wait-for-interrupt sleep. */
idt_set_gate(127, _isr127, 0x08, 0x8E, 1); /* Legacy system call entry point, called by userspace. */
asm volatile (
"lidt %0"
: : "m"(idtp)
);
}
/**
* @brief Quicker call to lidt for APs, when the IDT is already set up.
*
* We use the same idt in all cores, so there's not much to do here.
*/
void idt_ap_install(void) {
idtp.limit = sizeof(idt);
idtp.base = (uintptr_t)&idt;
asm volatile (
"lidt %0"
: : "m"(idtp)
);
}
/** External IRQ management */
#define IRQ_CHAIN_SIZE 16
#define IRQ_CHAIN_DEPTH 4
static irq_handler_chain_t irq_routines[IRQ_CHAIN_SIZE * IRQ_CHAIN_DEPTH] = { NULL };
static const char * _irq_handler_descriptions[IRQ_CHAIN_SIZE * IRQ_CHAIN_DEPTH] = { NULL };
/**
* @brief Examine the IRQ handler chain to see what handles an IRQ.
*
* This is a debug function used by the procfs /proc/irq callback.
* Can be called with different @p chain values to get all of the
* handlers when there is more than one.
*
* @param irq The interrupt number (0~15)
* @param chain Handler chain depth (0~4)
* @return The name of the handler.
*/
const char * get_irq_handler(int irq, int chain) {
if (irq >= IRQ_CHAIN_SIZE) return NULL;
if (chain >= IRQ_CHAIN_DEPTH) return NULL;
return _irq_handler_descriptions[IRQ_CHAIN_SIZE * chain + irq];
}
/**
* @brief Install an IRQ handler.
*
* TODO Shouldn't this return a status code? What if we have too many
* IRQs installed? What if @p irq is invalid (>16)?
*
* TODO Should we provide callers with a unique reference to their IRQ vector
* so it can be removed later?
*
* @param irq The IRQ number to handle (0~15)
* @param handler Function to install as a callback for this IRQ
* @param desc Textual description for debugging.
*/
void irq_install_handler(size_t irq, irq_handler_chain_t handler, const char * desc) {
for (size_t i = 0; i < IRQ_CHAIN_DEPTH; i++) {
if (irq_routines[i * IRQ_CHAIN_SIZE + irq])
continue;
irq_routines[i * IRQ_CHAIN_SIZE + irq] = handler;
_irq_handler_descriptions[i * IRQ_CHAIN_SIZE + irq ] = desc;
break;
}
}
/* We used to have a function here that incorrectly uninstalled IRQ handlers... */
/**
* @brief Examine the module table to find which module owns an address.
*
* Looks through the loaded module list to find what module
* owns @p addr, setting @p name and returning the corresponding module
* entry. Since we know how big modules are in memory, we can also know
* if an address doesn't belong to any module, in which case we return NULL.
*
* @param addr Address to look for
* @param name (out) Name of the matching module
* @return Pointer to LoadedModule for the matched module, or NULL.
*/
static struct LoadedModule * find_module(uintptr_t addr, char ** name) {
hashmap_t * modules = modules_get_list();
for (size_t i = 0; i < modules->size; ++i) {
hashmap_entry_t * x = modules->entries[i];
while (x) {
struct LoadedModule * info = x->value;
if (info->baseAddress <= addr && addr <= info->baseAddress + info->loadedSize) {
*name = (char*)x->key;
return info;
}
x = x->next;
}
}
return NULL;
}
/**
* @brief Use brute force to determine if an address is mapped.
*
* Examines the current page table to see if @p base and up to @p size
* is a valid region of memory. Useful for determining if a stack entry
* is a valid base pointer to a calling frame.
*
* @param base Address to validate
* @param size How many bytes after @p base are going to be examined.
* @return 1 if the range is mapped, 0 otherwise.
*/
static int validate_pointer(uintptr_t base, size_t size) {
uintptr_t end = size ? (base + (size - 1)) : base;
uintptr_t page_base = base >> 12;
uintptr_t page_end = end >> 12;
for (uintptr_t page = page_base; page <= page_end; ++page) {
if ((page & 0xffff800000000) != 0 && (page & 0xffff800000000) != 0xffff800000000) return 0;
union PML * page_entry = mmu_get_page_other(this_core->current_process->thread.page_directory->directory, page << 12);
if (!page_entry) return 0;
if (!page_entry->bits.present) return 0;
}
return 1;
}
extern char end[];
/**
* @brief Find the closest preceding symbol to an address.
*
* Scans the kernel symbol table to find the closest preceding
* symbol to the address @p ip and stores its name in @p name,
* returning the actual address of the symbol.
*
* As this uses the kernel symbol linkage table, it is only aware
* of exported functions and objects, and can not provide any
* information on static functions.
*
* @param ip Address to scan for
* @param name (out) Name of matching symbol
* @return Address of matching symbol
*/
static uintptr_t matching_symbol(uintptr_t ip, char ** name) {
hashmap_t * symbols = ksym_get_map();
uintptr_t best_match = 0;
for (size_t i = 0; i < symbols->size; ++i) {
hashmap_entry_t * x = symbols->entries[i];
while (x) {
void* sym_addr = x->value;
char* sym_name = x->key;
if ((uintptr_t)sym_addr < ip && (uintptr_t)sym_addr > best_match) {
best_match = (uintptr_t)sym_addr;
*name = sym_name;
}
x = x->next;
}
}
return best_match;
}
/**
* @brief Display a traceback from the given ip and stack base.
*
* Walks the stack referenced by @p bp and attempts to find
* kernel symbol names or module names. Stops when it reaches
* a return address that looks invalid.
*
* You probably want to @see arch_fatal_prepare before calling
* this to make sure you get a readable output.
*
* Note that symbol names are the closest symbol before the
* given address, and will only ever be exported symbols,
* so static functions will give the wrong name.
*
* We don't track symbols from modules at all at the moment,
* so for addresses in module space the best we can do is
* provide the name of the model and the offset into the loaded
* file, so that's what we do.
*
* @param ip IP address to assume is the top of the backtrace.
* @param bp Stack frame pointer.
*/
static void dump_traceback(uintptr_t ip, uintptr_t bp) {
int depth = 0;
int max_depth = 20;
while (bp && ip && depth < max_depth) {
dprintf(" 0x%016zx ", ip);
if (ip >= 0xffffffff80000000UL) {
char * name = NULL;
struct LoadedModule * mod = find_module(ip, &name);
if (mod) {
dprintf("\a in module '%s', base address %#zx (offset %#zx)\n",
name, mod->baseAddress, ip - mod->baseAddress);
} else {
dprintf("\a (unknown)\n");
}
} else if (ip >= (uintptr_t)&end && ip <= 0x800000000000) {
dprintf("\a in userspace\n");
} else if (ip <= (uintptr_t)&end) {
/* Find symbol match */
char * name;
uintptr_t addr = matching_symbol(ip, &name);
if (!addr) {
dprintf("\a (no match)\n");
} else {
dprintf("\a %s+0x%zx\n", name, ip-addr);
}
} else {
dprintf("\a (unknown)\n");
}
if (!validate_pointer(bp, sizeof(uintptr_t)) || !validate_pointer(bp + sizeof(uintptr_t), sizeof(uintptr_t))) {
break;
}
ip = *(uintptr_t*)(bp + sizeof(uintptr_t));
bp = *(uintptr_t*)(bp);
depth++;
}
}
/**
* @brief Display a traceback from the rip and rbp of a register state.
*
* Primarily used to dump tracebacks that led to unexpected interrupts.
*
* @param r Interrupt register context
*/
static void safe_dump_traceback(struct regs * r) {
dump_traceback(r->rip, r->rbp);
}
/**
* @brief Display a traceback from the current call context.
*/
void arch_dump_traceback(void) {
dump_traceback((uintptr_t)arch_dump_traceback+1, (uintptr_t)__builtin_frame_address(0));
}
/**
* @brief Map in more pages for a userspace stack.
*
* Allows for soft expansion of the stack downards on a page fault.
*
* @param fromAddr The low address to map, should be page aligned.
*/
static void map_more_stack(uintptr_t fromAddr) {
volatile process_t * volatile proc = this_core->current_process;
/* Is this thread the process leader? */
if (proc->group != 0) {
proc = process_from_pid(proc->group);
}
/* Make sure nothing else is going to mess with this process's page tables */
spin_lock(proc->image.lock);
/* Map more stack! */
for (uintptr_t i = fromAddr; i < proc->image.userstack; i += 0x1000) {
union PML * page = mmu_get_page(i, MMU_GET_MAKE);
mmu_frame_allocate(page, MMU_FLAG_WRITABLE);
}
/* Update the saved stack address */
proc->image.userstack = fromAddr;
spin_unlock(proc->image.lock);
}
/**
* @brief Handle fatal exceptions.
*
* Prepares for a fatal event, prints information on the running
* process and the cause of the panic, dumps the register state,
* prints a backtrace, and then hard loops.
*
* @param desc Textual description of the panic cause.
* @param r Interrupt register context
* @param faulting_address When available, the address that was accessed leading to this fault.
*/
static void panic(const char * desc, struct regs * r, uintptr_t faulting_address) {
/* Stop all other cores */
arch_fatal_prepare();
/* Print the description, current process, cause */
dprintf("\033[31mPanic!\033[0m %s pid=%d (%s) at %#zx\n", desc,
this_core->current_process ? (int)this_core->current_process->id : 0,
this_core->current_process ? this_core->current_process->name : "kernel",
faulting_address
);
/* Dump register state */
dprintf(
"Registers at interrupt:\n"
" $rip=0x%016lx\n"
" $rsi=0x%016lx,$rdi=0x%016lx,$rbp=0x%016lx,$rsp=0x%016lx\n"
" $rax=0x%016lx,$rbx=0x%016lx,$rcx=0x%016lx,$rdx=0x%016lx\n"
" $r8= 0x%016lx,$r9= 0x%016lx,$r10=0x%016lx,$r11=0x%016lx\n"
" $r12=0x%016lx,$r13=0x%016lx,$r14=0x%016lx,$r15=0x%016lx\n"
" cs=0x%016lx ss=0x%016lx rflags=0x%016lx int=0x%02lx err=0x%02lx\n",
r->rip,
r->rsi, r->rdi, r->rbp, r->rsp,
r->rax, r->rbx, r->rcx, r->rdx,
r->r8, r->r9, r->r10, r->r11,
r->r12, r->r13, r->r14, r->r15,
r->cs, r->ss, r->rflags, r->int_no, r->err_code
);
/* Dump GS segment register information */
uint32_t gs_base_low, gs_base_high;
asm volatile ( "rdmsr" : "=a" (gs_base_low), "=d" (gs_base_high): "c" (0xc0000101) );
uint32_t kgs_base_low, kgs_base_high;
asm volatile ( "rdmsr" : "=a" (kgs_base_low), "=d" (kgs_base_high): "c" (0xc0000102) );
dprintf(" gs=0x%08x%08x kgs=0x%08x%08x\n",
gs_base_high, gs_base_low, kgs_base_high, kgs_base_low);
/* Walk the call stack from before the interrupt */
safe_dump_traceback(r);
/* Stop this core */
arch_fatal();
}
/**
* @brief Debug interrupt
*
* Called when a CPU is single-stepping. We need to reset
* the single-step flag in RFLAGS and if we were actually
* debugging the current process we need to trigger a ptrace
* SINGLESTEP event. This should also return immediately
* from the syscall handler.
*
* @param r Interrupt register context
* @return Register context, which should be unmodified.
*/
static struct regs * _debug_int(struct regs * r) {
/* Unset the debug flag */
r->rflags &= ~(1 << 8);
/* If the current process was debugging, trigger a SINGLESTEP event. */
if (this_core->current_process->flags & PROC_FLAG_TRACE_SIGNALS) {
ptrace_signal(SIGTRAP, PTRACE_EVENT_SINGLESTEP);
}
/* Return from interrupt */
return r;
}
/**
* @brief Double fault should always panic.
*/
static void _double_fault(struct regs * r) {
panic("Double fault", r, 0);
}
/**
* @brief GPF handler.
*
* Mostly this is separated from other exceptions because
* GPF should cause SIGSEGV rather than SIGILL? I think?
*
* @param r Interrupt register context
*/
static void _general_protection_fault(struct regs * r) {
/* Were we in the kernel? */
if (!this_core->current_process || r->cs == 0x08) {
/* Then that's a panic. */
panic("GPF in kernel", r, 0);
}
/* Else, segfault the current process. */
send_signal(this_core->current_process->id, SIGSEGV, 1);
}
/**
* @brief Page fault handler.
*
* Handles magic return addresses, stack expansions, maybe
* later will handle COW or mmap'd filed... otherwise,
* mostly segfaults.
*
* @param r Interrupt register context
*/
static void _page_fault(struct regs * r) {
/* Obtain the "cause" address */
uintptr_t faulting_address;
asm volatile("mov %%cr2, %0" : "=r"(faulting_address));
/* 8DEADBEEFh is the magic ret-from-sig address. */
if (faulting_address == 0x8DEADBEEF) {
return_from_signal_handler(r);
return;
}
if ((r->err_code & 3) == 3) {
/* This is probably a COW page? */
extern int mmu_copy_on_write(uintptr_t address);
if (!mmu_copy_on_write(faulting_address)) return;
}
/* Was this a kernel page fault? Those are always a panic. */
if (!this_core->current_process || r->cs == 0x08) {
panic("Page fault in kernel", r, faulting_address);
}
/* Page was present but not writable */
/* Quietly map more stack if it was a viable stack address. */
if (faulting_address < 0x800000000000 && faulting_address > 0x700000000000) {
map_more_stack(faulting_address & 0xFFFFffffFFFFf000);
return;
}
/* Otherwise, segfault the current process. */
send_signal(this_core->current_process->id, SIGSEGV, 1);
}
/**
* @brief Legacy system call entrypoint.
*
* We don't have a non-legacy entrypoint, but this use of
* an interrupt to make syscalls is considered "legacy"
* by the existence of its replacement (SYSCALL/SYSRET).
*
* @param r Interrupt register context, which contains syscall arguments.
* @return Register state after system call, which contains return value.
*/
static struct regs * _syscall_entrypoint(struct regs * r) {
/* syscall_handler will modify r to set return value. */
syscall_handler(r);
/*
* I'm not actually sure if we're still cli'ing in any of the
* syscall handlers, but definitely make sure we're not allowing
* interrupts to remain disabled upon return from a system call.
*/
asm volatile("sti");
return r;
}
/**
* @brief AP-local timer signal.
*
* Update clocks and switch task gracefully.
*
* @param r Interrupt register context
* @return Register state after resume from task task switch.
*/
static struct regs * _local_timer(struct regs * r) {
extern void arch_update_clock(void);
arch_update_clock();
switch_task(1);
return r;
}
/**
* @brief Handle an exception interrupt.
*
* @param r Interrupt register context
* @param description Textual description of the exception, for panic messages.
*/
static void _exception(struct regs * r, const char * description) {
/* If we were in kernel space, this is a panic */
if (!this_core->current_process || r->cs == 0x08) {
panic(description, r, r->int_no);
}
/* Otherwise, these interrupts should trigger SIGILL */
send_signal(this_core->current_process->id, SIGILL, 1);
}
/**
* @brief Handle an installable interrupt. This handles PIC IRQs
* that need to be acknowledged.
*
* @param r Interrupt register context
* @param irq Translated IRQ number
*/
static void _handle_irq(struct regs * r, int irq) {
for (size_t i = 0; i < IRQ_CHAIN_DEPTH; i++) {
irq_handler_chain_t handler = irq_routines[i * IRQ_CHAIN_SIZE + irq];
if (!handler) break;
if (handler(r)) return;
}
/* Unhandled */
irq_ack(irq);
}
#define EXC(i,n) case i: _exception(r, n); break;
#define IRQ(i) case i: _handle_irq(r,i-32); break;
struct regs * isr_handler_inner(struct regs * r) {
switch (r->int_no) {
EXC(0,"divide-by-zero");
case 1: return _debug_int(r);
/* NMI doesn't reach here, we use it as a panic signal. */
EXC(3,"breakpoint"); /* TODO: This should map to a ptrace event */
EXC(4,"overflow");
EXC(5,"bound range exceeded");
EXC(6,"invalid opcode");
EXC(7,"device not available");
case 8: _double_fault(r); break;
/* 9 is a legacy exception that shouldn't happen */
EXC(10,"invalid TSS");
EXC(11,"segment not present");
EXC(12,"stack-segment fault");
case 13: _general_protection_fault(r); break;
case 14: _page_fault(r); break;
/* 15 is reserved */
EXC(16,"floating point exception");
EXC(17,"alignment check");
EXC(18,"machine check");
EXC(19,"SIMD floating-point exception");
EXC(20,"virtualization exception");
EXC(21,"control protection exception");
/* 22 through 27 are reserved */
EXC(28,"hypervisor injection exception");
EXC(29,"VMM communication exception");
EXC(30,"security exception");
/* 31 is reserved */
/* 16 IRQs that go to the general IRQ chain */
IRQ(32);
IRQ(33);
IRQ(34);
IRQ(35);
IRQ(36);
IRQ(37);
IRQ(38);
case 39: break; /* Except the spurious IRQ, just ignore that */
IRQ(40);
IRQ(41);
IRQ(42);
IRQ(43);
IRQ(44);
IRQ(45);
IRQ(46);
IRQ(47);
/* Local interrupts that make it here. */
case 123: return _local_timer(r);
case 127: return _syscall_entrypoint(r);
/* Other interrupts that don't make it here:
* 124: TLB shootdown, we just reload CR3 in the handler.
* 125: Fatal signal, jumps straight to a cli/hlt loop, though I think this just yields an NMI instead?
* 126: Quiet wakeup, do we even use this anymore?
*/
default: panic("Unexpected interrupt",r,0);
}
if (this_core->current_process == this_core->kernel_idle_task && process_queue && process_queue->head) {
/* If this is kidle and we got here, instead of finishing the interrupt
* we can just switch task and there will probably be something else
* to run that was awoken by the interrupt. */
switch_next();
}
return r;
}
struct regs * isr_handler(struct regs * r) {
int from_userspace = r->cs != 0x08;
this_core->interrupt_registers = r;
if (from_userspace && this_core->current_process) {
this_core->current_process->time_switch = arch_perf_timer();
}
struct regs * out = isr_handler_inner(r);
if (from_userspace && this_core->current_process) {
process_check_signals(out);
}
return out;
}