toaruos/kernel/mem/mem.c
Kevin Lange c0f45e0b7f VESA mode switching support.
BIOS execution is provided through the `v8086` module, which provides
software emulation of an 8086 processor. It is not currently working
with some BIOSes and may (read: probably will be) replaced with another
emulator (x86emu comes to mind) at some point in the near future. In the
meantime, the default video mode for QEMU works with this and it's
enough to get us on real VESA instead of fake VBE. The `bochs` module
will be renamed in a future commit. Userspace programs have been
adjusted to work at bitrates other than 32 *POORLY*. If you write pixels
left-to-right, they should work fine. They only work with 24-bpp
otherwise, and then you need to be careful of what pixels you are
writing when, or you will overwrite things in other pixels.

You may pass a commandline argument like the following to set display
modes:

  vid=vesa,1024,768

Or for stranger modes under QEMU or Bochs, use the bochs VBE
initializer:

  vid=bochs,1280,720

Note that the address of the linear framebuffer is still found via
hackish probing instead of PCI or trusting the VBE information, so if
you have things in the wrong memory ranges (0xE0000000+), be prepared to
have them get read.

Once again, this entire commit is a massive hack. I am happy that it
worked, and I will continue to make it less hacky, but in the meantime,
this is what we've got.

Happy holidays.
2011-12-25 00:40:40 -06:00

343 lines
7.3 KiB
C

/* vim: tabstop=4 shiftwidth=4 noexpandtab
*
* Kernel Memory Manager
*/
#include <system.h>
#include <process.h>
extern uintptr_t end;
uintptr_t placement_pointer = (uintptr_t)&end;
uintptr_t heap_end = (uintptr_t)NULL;
void
kmalloc_startat(
uintptr_t address
) {
placement_pointer = address;
}
/*
* kmalloc() is the kernel's dumb placement allocator
*/
uintptr_t
kmalloc_real(
size_t size,
int align,
uintptr_t * phys
) {
if (heap_end) {
void * address;
if (align) {
address = valloc(size);
} else {
address = malloc(size);
}
if (phys) {
page_t *page = get_page((uintptr_t)address, 0, kernel_directory);
*phys = page->frame * 0x1000 + ((uintptr_t)address & 0xFFF);
}
return (uintptr_t)address;
}
if (align && (placement_pointer & 0xFFFFF000)) {
placement_pointer &= 0xFFFFF000;
placement_pointer += 0x1000;
}
if (phys) {
*phys = placement_pointer;
}
uintptr_t address = placement_pointer;
placement_pointer += size;
return (uintptr_t)address;
}
/*
* Normal
*/
uintptr_t
kmalloc(
size_t size
) {
return kmalloc_real(size, 0, NULL);
}
/*
* Aligned
*/
uintptr_t
kvmalloc(
size_t size
) {
return kmalloc_real(size, 1, NULL);
}
/*
* With a physical address
*/
uintptr_t
kmalloc_p(
size_t size,
uintptr_t *phys
) {
return kmalloc_real(size, 0, phys);
}
/*
* Aligned, with a physical address
*/
uintptr_t
kvmalloc_p(
size_t size,
uintptr_t *phys
) {
return kmalloc_real(size, 1, phys);
}
/*
* Frame Allocation
*/
uint32_t *frames;
uint32_t nframes;
#define INDEX_FROM_BIT(b) (b / 0x20)
#define OFFSET_FROM_BIT(b) (b % 0x20)
static void
set_frame(
uintptr_t frame_addr
) {
uint32_t frame = frame_addr / 0x1000;
uint32_t index = INDEX_FROM_BIT(frame);
uint32_t offset = OFFSET_FROM_BIT(frame);
frames[index] |= (0x1 << offset);
}
static void
clear_frame(
uintptr_t frame_addr
) {
uint32_t frame = frame_addr / 0x1000;
uint32_t index = INDEX_FROM_BIT(frame);
uint32_t offset = OFFSET_FROM_BIT(frame);
frames[index] &= ~(0x1 << offset);
}
static uint32_t
test_frame(
uintptr_t frame_addr
) {
uint32_t frame = frame_addr / 0x1000;
uint32_t index = INDEX_FROM_BIT(frame);
uint32_t offset = OFFSET_FROM_BIT(frame);
return (frames[index] & (0x1 << offset));
}
static uint32_t
first_frame() {
uint32_t i, j;
for (i = 0; i < INDEX_FROM_BIT(nframes); ++i) {
if (frames[i] != 0xFFFFFFFF) {
for (j = 0; j < 32; ++j) {
uint32_t testFrame = 0x1 << j;
if (!(frames[i] & testFrame)) {
return i * 0x20 + j;
}
}
}
}
assert(0 && "Well, this sucks.");
return -1;
}
void
alloc_frame(
page_t *page,
int is_kernel,
int is_writeable
) {
if (page->frame != 0) {
page->rw = (is_writeable == 1) ? 1 : 0;
page->user = (is_kernel == 1) ? 0 : 1;
return;
} else {
uint32_t index = first_frame();
assert(index != (uint32_t)-1 && "Out of frames.");
set_frame(index * 0x1000);
page->present = 1;
page->rw = (is_writeable == 1) ? 1 : 0;
page->user = (is_kernel == 1) ? 0 : 1;
page->frame = index;
}
}
void
dma_frame(
page_t *page,
int is_kernel,
int is_writeable,
uintptr_t address
) {
/* Page this address directly */
page->present = 1;
page->rw = (is_writeable) ? 1 : 0;
page->user = (is_kernel) ? 0 : 1;
page->frame = address / 0x1000;
}
void
free_frame(
page_t *page
) {
uint32_t frame;
if (!(frame = page->frame)) {
assert(0);
return;
} else {
clear_frame(frame * 0x1000);
page->frame = 0x0;
}
}
uintptr_t
memory_use() {
uintptr_t ret = 0;
uint32_t i, j;
for (i = 0; i < INDEX_FROM_BIT(nframes); ++i) {
for (j = 0; j < 32; ++j) {
uint32_t testFrame = 0x1 << j;
if (frames[i] & testFrame) {
ret++;
}
}
}
return ret * 4;
}
uintptr_t
memory_total(){
return nframes * 4;
}
void
paging_install(uint32_t memsize) {
nframes = memsize / 4;
frames = (uint32_t *)kmalloc(INDEX_FROM_BIT(nframes));
memset(frames, 0, INDEX_FROM_BIT(nframes));
uintptr_t phys;
kernel_directory = (page_directory_t *)kvmalloc_p(sizeof(page_directory_t),&phys);
memset(kernel_directory, 0, sizeof(page_directory_t));
uint32_t i = 0;
while (i < placement_pointer + 0x3000) {
alloc_frame(get_page(i, 1, kernel_directory), 1, 0);
i += 0x1000;
}
isrs_install_handler(14, page_fault);
kernel_directory->physical_address = (uintptr_t)kernel_directory->physical_tables;
/* Kernel Heap Space */
for (i = placement_pointer; i < 0x2000000; i += 0x1000) {
//get_page(i, 1, kernel_directory);
alloc_frame(get_page(i, 1, kernel_directory), 1, 0);
}
current_directory = clone_directory(kernel_directory);
switch_page_directory(kernel_directory);
}
void
debug_print_directory() {
IRQ_OFF;
kprintf(" ---- [k:0x%x u:0x%x]\n", kernel_directory, current_directory);
for (uintptr_t i = 0; i < 1024; ++i) {
if (!current_directory->tables[i] || (uintptr_t)current_directory->tables[i] == (uintptr_t)0xFFFFFFFF) {
continue;
}
if (kernel_directory->tables[i] == current_directory->tables[i]) {
kprintf(" 0x%x - kern [0x%x] %d\n", current_directory->tables[i], &current_directory->tables[i], i);
} else {
kprintf(" 0x%x - user [0x%x] %d\n", current_directory->tables[i], &current_directory->tables[i], i);
}
}
kprintf(" ---- [done]\n");
IRQ_ON;
}
void
switch_page_directory(
page_directory_t * dir
) {
current_directory = dir;
asm volatile ("mov %0, %%cr3":: "r"(dir->physical_address));
uint32_t cr0;
asm volatile ("mov %%cr0, %0": "=r"(cr0));
cr0 |= 0x80000000;
asm volatile ("mov %0, %%cr0":: "r"(cr0));
}
page_t *
get_page(
uintptr_t address,
int make,
page_directory_t * dir
) {
address /= 0x1000;
uint32_t table_index = address / 1024;
if (dir->tables[table_index]) {
return &dir->tables[table_index]->pages[address % 1024];
} else if(make) {
uint32_t temp;
dir->tables[table_index] = (page_table_t *)kvmalloc_p(sizeof(page_table_t), (uintptr_t *)(&temp));
memset(dir->tables[table_index], 0, sizeof(page_table_t));
dir->physical_tables[table_index] = temp | 0x7; /* Present, R/w, User */
return &dir->tables[table_index]->pages[address % 1024];
} else {
return 0;
}
}
void
page_fault(
struct regs *r) {
uint32_t faulting_address;
asm volatile("mov %%cr2, %0" : "=r"(faulting_address));
int present = !(r->err_code & 0x1);
int rw = r->err_code & 0x2;
int user = r->err_code & 0x4;
int reserved = r->err_code & 0x8;
int id = r->err_code & 0x10;
kprintf("\033[1;37;41m");
kprintf("Segmentation fault. (p:%d,rw:%d,user:%d,res:%d,id:%d) at 0x%x eip:0x%x pid=%d\n", present, rw, user, reserved, id, faulting_address, r->eip, getpid());
HALT_AND_CATCH_FIRE("Segmentation fault", r);
}
/*
* Heap
* Stop using kalloc and friends after installing the heap
* otherwise shit will break. I've conveniently broken
* kalloc when installing the heap, just for those of you
* who feel the need to screw up.
*/
void
heap_install() {
heap_end = (placement_pointer + 0x1000) & ~0xFFF;
}
void *
sbrk(
uintptr_t increment
) {
ASSERT((increment % 0x1000 == 0) && "Kernel requested to expand heap by a non-page-multiple value");
ASSERT((heap_end % 0x1000 == 0) && "Kernel heap is not page-aligned!");
ASSERT(heap_end + increment <= 0x02000000 && "The kernel has attempted to allocate beyond the end of its heap.");
uintptr_t address = heap_end;
heap_end += increment;
memset((void *)address, 0x0, increment);
return (void *)address;
}