toaruos/modules/debug_sh.c

833 lines
20 KiB
C

/* vim: tabstop=4 shiftwidth=4 noexpandtab
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2014-2018 K. Lange
*
* Kernel Debug Shell
*/
#include <kernel/system.h>
#include <kernel/fs.h>
#include <kernel/printf.h>
#include <kernel/logging.h>
#include <kernel/process.h>
#include <kernel/version.h>
#include <kernel/tokenize.h>
#include <kernel/pci.h>
#include <kernel/pipe.h>
#include <kernel/elf.h>
#include <kernel/module.h>
#include <kernel/args.h>
#include <kernel/mod/shell.h>
#include <toaru/list.h>
#include <toaru/hashmap.h>
#include <sys/termios.h>
/*
* This is basically the same as a userspace buffered/unbuffered
* termio call. These are the same sorts of things I would use in
* a text editor in userspace, but with the internal kernel calls
* rather than system calls.
*/
static struct termios old;
void tty_set_unbuffered(fs_node_t * dev) {
ioctl_fs(dev, TCGETS, &old);
struct termios new = old;
new.c_lflag &= (~ICANON & ~ECHO);
ioctl_fs(dev, TCSETSF, &new);
}
void tty_set_buffered(fs_node_t * dev) {
ioctl_fs(dev, TCSETSF, &old);
}
void tty_set_vintr(fs_node_t * dev, char vintr) {
struct termios tmp;
ioctl_fs(dev, TCGETS, &tmp);
tmp.c_cc[VINTR] = vintr;
ioctl_fs(dev, TCSETSF, &tmp);
}
/*
* Quick readline implementation.
*
* Most of these TODOs are things I've done already in older code:
* TODO tabcompletion would be nice
* TODO history is also nice
*/
int debug_shell_readline(fs_node_t * dev, char * linebuf, int max) {
int r = read_fs(dev, 0, max, (uint8_t *)linebuf);
if (r <= 0) return -1;
if (r && linebuf[r-1] == '\n') {
linebuf[r-1] = '\0';
return r-1;
}
return r;
}
/*
* Tasklet for running a userspace application.
*/
static void debug_shell_run_sh(void * data, char * name) {
char * argv[] = {
data,
NULL
};
int argc = 0;
while (argv[argc]) {
argc++;
}
char * env[] = {
"LD_LIBRARY_PATH=/lib",
NULL
};
system(argv[0], argc, argv, env); /* Run shell */
task_exit(42);
}
static hashmap_t * shell_commands_map = NULL;
/*
* Shell commands
*/
static int shell_create_userspace_shell(fs_node_t * tty, int argc, char * argv[]) {
int pid = create_kernel_tasklet(debug_shell_run_sh, "[[k-sh]]", "/bin/sh");
fprintf(tty, "Shell started with pid = %d\n", pid);
int status;
waitpid(pid,&status,0);
return status;
}
static int shell_replace_login(fs_node_t * tty, int argc, char * argv[]) {
/* We need to fork to get a clean task space */
create_kernel_tasklet(debug_shell_run_sh, "[[k-sh]]", "/bin/login");
/* Then exit the shell process */
task_exit(0);
/* unreachable */
return 0;
}
static int shell_echo(fs_node_t * tty, int argc, char * argv[]) {
for (int i = 1; i < argc; ++i) {
fprintf(tty, "%s ", argv[i]);
}
fprintf(tty, "\n");
return 0;
}
static int dumb_strcmp(void * a, void *b) {
return strcmp(a, b);
}
static void dumb_sort(void ** list, size_t length, int (*compare)(void*,void*)) {
for (unsigned int i = 0; i < length-1; ++i) {
for (unsigned int j = 0; j < length-1; ++j) {
if (compare(list[j], list[j+1]) > 0) {
void * t = list[j+1];
list[j+1] = list[j];
list[j] = t;
}
}
}
}
static void print_spaces(fs_node_t * tty, int num_spaces) {
for (int i = 0; i < num_spaces; ++i) {
fprintf(tty, " ");
}
}
static int shell_help(fs_node_t * tty, int argc, char * argv[]) {
list_t * hash_keys = hashmap_keys(shell_commands_map);
char ** keys = malloc(sizeof(char *) * hash_keys->length);
unsigned int i = 0;
unsigned int max_width = 0;
foreach(_key, hash_keys) {
char * key = (char *)_key->value;
keys[i] = key;
i++;
if (strlen(key) > max_width) {
max_width = strlen(key);
}
}
dumb_sort((void **)keys, hash_keys->length, &dumb_strcmp);
for (i = 0; i < hash_keys->length; ++i) {
struct shell_command * c = hashmap_get(shell_commands_map, keys[i]);
fprintf(tty, "\033[1;32m%s\033[0m ", c->name);
print_spaces(tty, max_width- strlen(c->name));
fprintf(tty, "- %s\n", c->description);
}
free(keys);
list_free(hash_keys);
free(hash_keys);
return 0;
}
static int shell_cd(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
return 1;
}
char * newdir = argv[1];
char * path = canonicalize_path(current_process->wd_name, newdir);
fs_node_t * chd = kopen(path, 0);
if (chd) {
if ((chd->flags & FS_DIRECTORY) == 0) {
return 1;
}
close_fs(chd);
free(current_process->wd_name);
current_process->wd_name = malloc(strlen(path) + 1);
memcpy(current_process->wd_name, path, strlen(path) + 1);
return 0;
} else {
return 1;
}
}
static int shell_ls(fs_node_t * tty, int argc, char * argv[]) {
fs_node_t * wd;
if (argc < 2) {
wd = kopen(current_process->wd_name, 0);
} else {
wd = kopen(argv[1], 0);
}
uint32_t index = 0;
struct dirent * kentry = readdir_fs(wd, index);
while (kentry) {
fprintf(tty, "%s\n", kentry->name);
free(kentry);
index++;
kentry = readdir_fs(wd, index);
}
close_fs(wd);
return 0;
}
static int shell_cat(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
fprintf(tty, "Usage: cat <file>\n");
return 1;
}
fs_node_t * node = kopen(argv[1], 0);
if (!node) {
fprintf(tty, "Could not open %s.\n", argv[1]);
return 1;
}
#define CHUNK_SIZE 4096
uint8_t * buf = malloc(CHUNK_SIZE);
memset(buf, 0, CHUNK_SIZE);
size_t offset = 0;
while (1) {
size_t r = read_fs(node, offset, CHUNK_SIZE, buf);
if (!r) break;
write_fs(tty, 0, r, buf);
offset += r;
}
close_fs(node);
return 0;
}
static int shell_log(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
fprintf(tty, "Log level is currently %d.\n", debug_level);
fprintf(tty, "Serial logging is %s.\n", !!debug_file ? "enabled" : "disabled");
fprintf(tty, "Usage: log [on|off] [<level>]\n");
} else {
if (!strcmp(argv[1], "direct")) {
debug_file = kopen("/dev/ttyS0", 0);
if (argc > 2) {
debug_level = atoi(argv[2]);
}
} else if (!strcmp(argv[1], "on")) {
debug_file = tty;
if (argc > 2) {
debug_level = atoi(argv[2]);
}
} else if (!strcmp(argv[1], "off")) {
debug_file = NULL;
}
}
return 0;
}
static void scan_hit_list(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
fs_node_t * tty = extra;
fprintf(tty, "%2x:%2x.%d (%4x, %4x:%4x) %s %s\n",
(int)pci_extract_bus(device),
(int)pci_extract_slot(device),
(int)pci_extract_func(device),
(int)pci_find_type(device),
vendorid,
deviceid,
pci_vendor_lookup(vendorid),
pci_device_lookup(vendorid,deviceid));
fprintf(tty, " BAR0: 0x%8x", pci_read_field(device, PCI_BAR0, 4));
fprintf(tty, " BAR1: 0x%8x", pci_read_field(device, PCI_BAR1, 4));
fprintf(tty, " BAR2: 0x%8x", pci_read_field(device, PCI_BAR2, 4));
fprintf(tty, " BAR3: 0x%8x", pci_read_field(device, PCI_BAR3, 4));
fprintf(tty, " BAR4: 0x%8x", pci_read_field(device, PCI_BAR4, 4));
fprintf(tty, " BAR6: 0x%8x\n", pci_read_field(device, PCI_BAR5, 4));
fprintf(tty, " IRQ Line: %d", pci_read_field(device, 0x3C, 1));
fprintf(tty, " IRQ Pin: %d", pci_read_field(device, 0x3D, 1));
fprintf(tty, " Interrupt: %d", pci_get_interrupt(device));
fprintf(tty, " Status: 0x%4x\n", pci_read_field(device, PCI_STATUS, 2));
}
static int shell_pci(fs_node_t * tty, int argc, char * argv[]) {
pci_scan(&scan_hit_list, -1, tty);
return 0;
}
static void find_isa_bridge(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
if (vendorid == 0x8086 && (deviceid == 0x7000 || deviceid == 0x7110)) {
*((uint32_t *)extra) = device;
}
}
static int shell_frob_piix(fs_node_t * tty, int argc, char * argv[]) {
uint32_t pci_isa = 0;
pci_scan(&find_isa_bridge, -1, &pci_isa);
if (pci_isa) {
fprintf(tty, "PCI-to-ISA interrupt mappings by line:\n");
for (int i = 0; i < 4; ++i) {
fprintf(tty, "Line %d: 0x%2x\n", i+1, pci_read_field(pci_isa, 0x60+i, 1));
}
}
return 0;
}
static int shell_uid(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
fprintf(tty, "uid=%d\n", current_process->user);
} else {
current_process->user = atoi(argv[1]);
}
return 0;
}
char * special_thing = "I am a string from the kernel.\n";
static int shell_mod(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
fprintf(tty, "%s: expected argument\n", argv[0]);
return 1;
}
fs_node_t * file = kopen(argv[1], 0);
if (!file) {
fprintf(tty, "%s: Error loading module '%s': File not found\n", argv[0], argv[1]);
return 1;
}
close_fs(file);
module_data_t * mod_info = module_load(argv[1]);
if (!mod_info) {
fprintf(tty, "%s: Error loading module '%s'\n", argv[0], argv[1]);
return 1;
}
fprintf(tty, "Module '%s' loaded at 0x%x\n", mod_info->mod_info->name, mod_info->bin_data);
return 0;
}
static int shell_symbols(fs_node_t * tty, int argc, char * argv[]) {
if (argc > 1 && !strcmp(argv[1],"--all")) {
list_t * hash_keys = hashmap_keys(modules_get_symbols());
foreach(_key, hash_keys) {
char * key = (char *)_key->value;
uintptr_t a = (uintptr_t)hashmap_get(modules_get_symbols(), key);
fprintf(tty, "0x%x - %s\n", a, key);
}
free(hash_keys);
} else {
extern char kernel_symbols_start[];
extern char kernel_symbols_end[];
struct ksym {
uintptr_t addr;
char name[];
} * k = (void*)&kernel_symbols_start;
while ((uintptr_t)k < (uintptr_t)&kernel_symbols_end) {
fprintf(tty, "0x%x - %s\n", k->addr, k->name);
k = (void *)((uintptr_t)k + sizeof(uintptr_t) + strlen(k->name) + 1);
}
}
return 0;
}
static int shell_print(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 3) {
fprintf(tty, "print format_string symbol_name\n");
return 1;
}
char * format = argv[1];
char * symbol = argv[2];
int deref = 0;
if (symbol[0] == '*') {
symbol = &symbol[1];
deref = 1;
}
void * addr = hashmap_get(modules_get_symbols(),symbol);
if (!addr) return 1;
if (deref) {
fprintf(tty, format, addr);
} else {
fprintf(tty, format, *((uintptr_t *)addr));
}
fprintf(tty, "\n");
return 0;
}
static int shell_call(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
fprintf(tty, "call function_name\n");
return 1;
}
char * symbol = argv[1];
void (*addr)(void) = (void (*)(void))(uintptr_t)hashmap_get(modules_get_symbols(),symbol);
if (!addr) return 1;
addr();
return 0;
}
static int shell_modules(fs_node_t * tty, int argc, char * argv[]) {
list_t * hash_keys = hashmap_keys(modules_get_list());
foreach(_key, hash_keys) {
char * key = (char *)_key->value;
module_data_t * mod_info = hashmap_get(modules_get_list(), key);
fprintf(tty, "0x%x {.init=0x%x, .fini=0x%x} %s",
mod_info->bin_data,
mod_info->mod_info->initialize,
mod_info->mod_info->finalize,
mod_info->mod_info->name);
if (mod_info->deps) {
unsigned int i = 0;
fprintf(tty, " Deps: ");
while (i < mod_info->deps_length) {
fprintf(tty, "%s ", &mod_info->deps[i]);
i += strlen(&mod_info->deps[i]) + 1;
}
}
fprintf(tty, "\n");
}
free(hash_keys);
return 0;
}
static int shell_rdtsc(fs_node_t * tty, int argc, char * argv[]) {
uint64_t x;
asm volatile ("rdtsc" : "=A" (x));
fprintf(tty, "0x%x%x\n", (uint32_t)(x >> 32), (uint32_t)(x & 0xFFFFFFFF));
return 0;
}
static int shell_mhz(fs_node_t * tty, int argc, char * argv[]) {
uint64_t x, y;
asm volatile ("rdtsc" : "=A" (x));
unsigned long s, ss;
relative_time(1, 0, &s, &ss);
sleep_until((process_t *)current_process, s, ss);
switch_task(0);
asm volatile ("rdtsc" : "=A" (y));
uint64_t diff = y - x;
uint32_t f = diff >> 15;
uint32_t mhz = f / 30;
fprintf(tty, "%d MHz\n", mhz);
return 0;
}
/*
* Determine the size of a smart terminal that we don't have direct
* termios access to. This is done by sending a cursor-move command
* that will put the cursor into the lower right corner and then
* requesting the cursor position report. We then read and parse
* the position report. In the case where the terminal on the other
* end is actually dumb, we end up waiting for some input and
* then timing out.
* TODO with asyncio support, the timeout should actually work.
* consider also using an alarm (which I also don't have)
*/
static void divine_size(fs_node_t * dev, int * width, int * height) {
char tmp[100];
int read = 0;
unsigned long start_tick = timer_ticks;
memset(tmp, 0, sizeof(tmp));
/* Move cursor, Request position, Reset cursor */
tty_set_unbuffered(dev);
fprintf(dev, "\033[1000;1000H\033[6n\033[H");
while (1) {
char buf[1];
int r = read_fs(dev, 0, 1, (unsigned char *)buf);
if (r > 0) {
if (buf[0] != 'R') {
if (read > 1) {
tmp[read-2] = buf[0];
}
read++;
} else {
break;
}
}
if (timer_ticks - start_tick >= 2) {
/*
* We've timed out. This will only be triggered
* when we eventually receive something, though
*/
*width = 80;
*height = 23;
/* Clear and return */
fprintf(dev, "\033[J");
tty_set_buffered(dev);
return;
}
}
/* Clear */
fprintf(dev, "\033[J");
/* Break up the result into two strings */
for (unsigned int i = 0; i < strlen(tmp); i++) {
if (tmp[i] == ';') {
tmp[i] = '\0';
break;
}
}
char * h = (char *)((uintptr_t)tmp + strlen(tmp)+1);
/* And then parse it into numbers */
*height = atoi(tmp);
*width = atoi(h);
tty_set_buffered(dev);
}
static int shell_divinesize(fs_node_t * tty, int argc, char * argv[]) {
struct winsize size = {0,0,0,0};
/* Attempt to divine the terminal size. Changing the window size after this will do bad things */
int width, height;
divine_size(tty, &width, &height);
fprintf(tty, "Identified size: %d x %d\n", width, height);
size.ws_row = height;
size.ws_col = width;
ioctl_fs(tty, TIOCSWINSZ, &size);
return 0;
}
static int shell_fix_mouse(fs_node_t * tty, int argc, char * argv[]) {
fs_node_t * mouse = kopen("/dev/mouse", 0);
if (mouse) {
ioctl_fs(mouse, 1, NULL);
close_fs(mouse);
}
return 0;
}
static int shell_mount(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 4) {
fprintf(tty, "Usage: %s type device mountpoint\n", argv[0]);
return 1;
}
return -vfs_mount_type(argv[1], argv[2], argv[3]);
}
static int shell_exit(fs_node_t * tty, int argc, char * argv[]) {
kexit(0);
return 0;
}
static int shell_cursor_off(fs_node_t * tty, int argc, char * argv[]) {
outportb(0x3D4, 14);
outportb(0x3D5, 0xFF);
outportb(0x3D4, 15);
outportb(0x3D5, 0xFF);
return 0;
}
extern pid_t trace_pid;
static int shell_debug_pid(fs_node_t * tty, int argc, char * argv[]) {
trace_pid = atoi(argv[1]);
return 0;
}
extern hashmap_t * kernel_args_map;
static int shell_set(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 3) {
fprintf(tty, "set KEY VALUE");
return 1;
}
hashmap_set(kernel_args_map, argv[1], strdup(argv[2]));
return 0;
}
static struct shell_command shell_commands[] = {
{"shell", &shell_create_userspace_shell,
"Runs a userspace shell on this tty."},
{"login", &shell_replace_login,
"Replace the debug shell with /bin/login."},
{"echo", &shell_echo,
"Prints arguments."},
{"help", &shell_help,
"Prints a list of possible shell commands and their descriptions."},
{"cd", &shell_cd,
"Change current directory."},
{"ls", &shell_ls,
"List files in current or other directory."},
{"cat", &shell_cat,
"Read a file to the console."},
{"log", &shell_log,
"Configure serial debug logging."},
{"pci", &shell_pci,
"Print PCI devices, as well as their names and BARs."},
{"uid", &shell_uid,
"Change the effective user id of the shell."},
{"mod", &shell_mod,
"[testing] Module loading."},
{"symbols", &shell_symbols,
"Dump symbol table."},
{"debug_pid", &shell_debug_pid,
"Set pid to trace syscalls for."},
{"print", &shell_print,
"[dangerous] Print the value of a symbol using a format string."},
{"call", &shell_call,
"[dangerous] Call a function by name."},
{"modules", &shell_modules,
"Print names and addresses of all loaded modules."},
{"divine-size", &shell_divinesize,
"Attempt to discover TTY size of serial."},
{"fix-mouse", &shell_fix_mouse,
"Attempt to reset mouse device."},
{"mount", &shell_mount,
"Mount a filesystemp."},
{"rdtsc", &shell_rdtsc,
"Read the TSC, if available."},
{"mhz", &shell_mhz,
"Use TSC to determine clock speed."},
{"cursor-off", &shell_cursor_off,
"Disable VGA text mode cursor."},
{"exit", &shell_exit,
"Quit the shell."},
{"piix", &shell_frob_piix,
"frob piix"},
{"set", &shell_set,
"set kcmdline flag"},
{NULL, NULL, NULL}
};
void debug_shell_install(struct shell_command * sh) {
hashmap_set(shell_commands_map, sh->name, sh);
}
/*
* A TTY object to pass to the tasklets for handling
* serial-tty interaction. This probably shouldn't
* be done as tasklets - TTYs should just be able
* to wrap existing fs_nodes themselves, but that's
* a problem for another day.
*/
struct tty_o {
fs_node_t * node;
fs_node_t * tty;
};
/*
* These tasklets handle tty-serial interaction.
*/
static void debug_shell_handle_in(void * data, char * name) {
struct tty_o * tty = (struct tty_o *)data;
while (1) {
uint8_t buf[1];
int r = read_fs(tty->tty, 0, 1, (unsigned char *)buf);
write_fs(tty->node, 0, r, buf);
}
}
static void debug_shell_handle_out(void * data, char * name) {
struct tty_o * tty = (struct tty_o *)data;
while (1) {
uint8_t buf[1];
int r = read_fs(tty->node, 0, 1, (unsigned char *)buf);
write_fs(tty->tty, 0, r, buf);
}
}
static void debug_shell_actual(void * data, char * name) {
current_process->image.entry = 0;
fs_node_t * tty = (fs_node_t *)current_process->fds->entries[1];
/* Our prompt will include the version number of the current kernel */
char version_number[1024];
sprintf(version_number, __kernel_version_format,
__kernel_version_major,
__kernel_version_minor,
__kernel_version_lower,
__kernel_version_suffix);
/* Initialize the shell commands map */
int retval = 0;
while (1) {
char command[512];
/* Print out the prompt */
if (retval) {
fprintf(tty, "\033[1;34m%s-%s \033[1;31m%d\033[1;34m %s#\033[0m ", __kernel_name, version_number, retval, current_process->wd_name);
} else {
fprintf(tty, "\033[1;34m%s-%s %s#\033[0m ", __kernel_name, version_number, current_process->wd_name);
}
/* Read a line */
if (debug_shell_readline(current_process->fds->entries[0], command, 511) < 0) {
kexit(0);
}
char * arg = strdup(command);
char * argv[1024]; /* Command tokens (space-separated elements) */
int argc = tokenize(arg, " ", argv);
if (!argc) continue;
/* Parse the command string */
struct shell_command * sh = hashmap_get(shell_commands_map, argv[0]);
if (sh) {
retval = sh->function(tty, argc, argv);
} else {
fprintf(tty, "Unrecognized command: %s\n", argv[0]);
}
free(arg);
}
}
/*
* Tasklet for managing the kernel serial console.
* This is basically a very simple shell, with access
* to some internal kernel commands, and (eventually)
* debugging routines.
*/
static void debug_shell_run(void * data, char * name) {
/*
* We will run on the first serial port.
* TODO detect that this failed
*/
fs_node_t * tty = kopen("/dev/ttyS0", 0);
fs_node_t * fs_master;
fs_node_t * fs_slave;
pty_create(NULL, &fs_master, &fs_slave);
/* Attach the serial to the TTY interface */
struct tty_o _tty = {.node = fs_master, .tty = tty};
create_kernel_tasklet(debug_shell_handle_in, "[kttydebug-in]", (void *)&_tty);
create_kernel_tasklet(debug_shell_handle_out, "[kttydebug-out]", (void *)&_tty);
/* Set the device to be the actual TTY slave */
tty = fs_slave;
int fd = process_append_fd((process_t *)current_process, tty);
process_move_fd((process_t *)current_process, fd, 0);
process_move_fd((process_t *)current_process, fd, 1);
fs_master->refcount = -1;
fs_slave->refcount = -1;
current_process->fds->entries[0] = tty;
current_process->fds->entries[1] = tty;
current_process->fds->entries[2] = tty;
current_process->fds->length = 3;
tty_set_vintr(tty, 0x02);
fprintf(tty, "\n\n"
"Serial debug console started.\n"
"Type `help` for a list of commands.\n"
"To access a userspace shell, type `shell`.\n"
"Use ^B to send SIGINT instead of ^C.\n"
"\n");
debug_shell_actual(tty, name);
}
int debug_shell_start(void) {
/* Setup shell commands */
shell_commands_map = hashmap_create(10);
struct shell_command * sh = &shell_commands[0];
while (sh->name) {
hashmap_set(shell_commands_map, sh->name, sh);
sh++;
}
debug_hook = debug_shell_actual;
if (args_present("kdebug")) {
int i = create_kernel_tasklet(debug_shell_run, "[kttydebug]", NULL);
debug_print(NOTICE, "Started tasklet with pid=%d", i);
}
return 0;
}
int debug_shell_stop(void) {
debug_print(NOTICE, "Tried to unload debug shell, but debug shell has no real shutdown routine. Don't do that!");
return 0;
}
MODULE_DEF(debugshell, debug_shell_start, debug_shell_stop);
MODULE_DEPENDS(serial);