toaruos/kernel/arch/x86_64/idt.c

391 lines
12 KiB
C

#include <kernel/types.h>
#include <kernel/string.h>
#include <kernel/printf.h>
#include <kernel/vfs.h>
#include <kernel/version.h>
#include <kernel/process.h>
#include <kernel/signal.h>
#include <kernel/misc.h>
#include <kernel/time.h>
#include <kernel/ptrace.h>
#include <kernel/hashmap.h>
#include <kernel/module.h>
#include <kernel/ksym.h>
#include <sys/time.h>
#include <sys/utsname.h>
#include <sys/ptrace.h>
#include <kernel/arch/x86_64/mmu.h>
#include <kernel/arch/x86_64/ports.h>
#include <kernel/arch/x86_64/pml.h>
#include <kernel/arch/x86_64/regs.h>
#include <kernel/arch/x86_64/irq.h>
static struct idt_pointer idtp;
static idt_entry_t idt[256];
void idt_set_gate(uint8_t num, interrupt_handler_t handler, uint16_t selector, uint8_t flags, int userspace) {
uintptr_t base = (uintptr_t)handler;
idt[num].base_low = (base & 0xFFFF);
idt[num].base_mid = (base >> 16) & 0xFFFF;
idt[num].base_high = (base >> 32) & 0xFFFFFFFF;
idt[num].selector = selector;
idt[num].zero = 0;
idt[num].pad = 0;
idt[num].flags = flags | (userspace ? 0x60 : 0);
}
void idt_install(void) {
idtp.limit = sizeof(idt);
idtp.base = (uintptr_t)&idt;
/** ISRs */
idt_set_gate(0, _isr0, 0x08, 0x8E, 0);
idt_set_gate(1, _isr1, 0x08, 0x8E, 0);
idt_set_gate(2, _isr2, 0x08, 0x8E, 0);
idt_set_gate(3, _isr3, 0x08, 0x8E, 0);
idt_set_gate(4, _isr4, 0x08, 0x8E, 0);
idt_set_gate(5, _isr5, 0x08, 0x8E, 0);
idt_set_gate(6, _isr6, 0x08, 0x8E, 0);
idt_set_gate(7, _isr7, 0x08, 0x8E, 0);
idt_set_gate(8, _isr8, 0x08, 0x8E, 0);
idt_set_gate(9, _isr9, 0x08, 0x8E, 0);
idt_set_gate(10, _isr10, 0x08, 0x8E, 0);
idt_set_gate(11, _isr11, 0x08, 0x8E, 0);
idt_set_gate(12, _isr12, 0x08, 0x8E, 0);
idt_set_gate(13, _isr13, 0x08, 0x8E, 0);
idt_set_gate(14, _isr14, 0x08, 0x8E, 0);
idt_set_gate(15, _isr15, 0x08, 0x8E, 0);
idt_set_gate(16, _isr16, 0x08, 0x8E, 0);
idt_set_gate(17, _isr17, 0x08, 0x8E, 0);
idt_set_gate(18, _isr18, 0x08, 0x8E, 0);
idt_set_gate(19, _isr19, 0x08, 0x8E, 0);
idt_set_gate(20, _isr20, 0x08, 0x8E, 0);
idt_set_gate(21, _isr21, 0x08, 0x8E, 0);
idt_set_gate(22, _isr22, 0x08, 0x8E, 0);
idt_set_gate(23, _isr23, 0x08, 0x8E, 0);
idt_set_gate(24, _isr24, 0x08, 0x8E, 0);
idt_set_gate(25, _isr25, 0x08, 0x8E, 0);
idt_set_gate(26, _isr26, 0x08, 0x8E, 0);
idt_set_gate(27, _isr27, 0x08, 0x8E, 0);
idt_set_gate(28, _isr28, 0x08, 0x8E, 0);
idt_set_gate(29, _isr29, 0x08, 0x8E, 0);
idt_set_gate(30, _isr30, 0x08, 0x8E, 0);
idt_set_gate(31, _isr31, 0x08, 0x8E, 0);
idt_set_gate(32, _irq0, 0x08, 0x8E, 0);
idt_set_gate(33, _irq1, 0x08, 0x8E, 0);
idt_set_gate(34, _irq2, 0x08, 0x8E, 0);
idt_set_gate(35, _irq3, 0x08, 0x8E, 0);
idt_set_gate(36, _irq4, 0x08, 0x8E, 0);
idt_set_gate(37, _irq5, 0x08, 0x8E, 0);
idt_set_gate(38, _irq6, 0x08, 0x8E, 0);
idt_set_gate(39, _irq7, 0x08, 0x8E, 0);
idt_set_gate(40, _irq8, 0x08, 0x8E, 0);
idt_set_gate(41, _irq9, 0x08, 0x8E, 0);
idt_set_gate(42, _irq10, 0x08, 0x8E, 0);
idt_set_gate(43, _irq11, 0x08, 0x8E, 0);
idt_set_gate(44, _irq12, 0x08, 0x8E, 0);
idt_set_gate(45, _irq13, 0x08, 0x8E, 0);
idt_set_gate(46, _irq14, 0x08, 0x8E, 0);
idt_set_gate(47, _irq15, 0x08, 0x8E, 0);
idt_set_gate(123, _isr123, 0x08, 0x8E, 0); /* Clock interrupt for other processors */
idt_set_gate(124, _isr124, 0x08, 0x8E, 0); /* Bad TLB shootdown. */
idt_set_gate(125, _isr125, 0x08, 0x8E, 0); /* Halts everyone. */
idt_set_gate(126, _isr126, 0x08, 0x8E, 0); /* Does nothing, used to exit wait-for-interrupt sleep. */
idt_set_gate(127, _isr127, 0x08, 0x8E, 1); /* Legacy system call entry point, called by userspace. */
asm volatile (
"lidt %0"
: : "m"(idtp)
);
}
void idt_ap_install(void) {
idtp.limit = sizeof(idt);
idtp.base = (uintptr_t)&idt;
asm volatile (
"lidt %0"
: : "m"(idtp)
);
}
static spin_lock_t dump_lock = {0};
static void dump_regs(struct regs * r) {
spin_lock(dump_lock);
dprintf(
"Registers at interrupt:\n"
" $rip=0x%016lx\n"
" $rsi=0x%016lx,$rdi=0x%016lx,$rbp=0x%016lx,$rsp=0x%016lx\n"
" $rax=0x%016lx,$rbx=0x%016lx,$rcx=0x%016lx,$rdx=0x%016lx\n"
" $r8= 0x%016lx,$r9= 0x%016lx,$r10=0x%016lx,$r11=0x%016lx\n"
" $r12=0x%016lx,$r13=0x%016lx,$r14=0x%016lx,$r15=0x%016lx\n"
" cs=0x%016lx ss=0x%016lx rflags=0x%016lx int=0x%02lx err=0x%02lx\n",
r->rip,
r->rsi, r->rdi, r->rbp, r->rsp,
r->rax, r->rbx, r->rcx, r->rdx,
r->r8, r->r9, r->r10, r->r11,
r->r12, r->r13, r->r14, r->r15,
r->cs, r->ss, r->rflags, r->int_no, r->err_code
);
uint32_t gs_base_low, gs_base_high;
asm volatile ( "rdmsr" : "=a" (gs_base_low), "=d" (gs_base_high): "c" (0xc0000101) );
uint32_t kgs_base_low, kgs_base_high;
asm volatile ( "rdmsr" : "=a" (kgs_base_low), "=d" (kgs_base_high): "c" (0xc0000102) );
dprintf(" gs=0x%08x%08x kgs=0x%08x%08x\n",
gs_base_high, gs_base_low, kgs_base_high, kgs_base_low);
spin_unlock(dump_lock);
}
extern void syscall_handler(struct regs *);
#define IRQ_CHAIN_SIZE 16
#define IRQ_CHAIN_DEPTH 4
static irq_handler_chain_t irq_routines[IRQ_CHAIN_SIZE * IRQ_CHAIN_DEPTH] = { NULL };
static const char * _irq_handler_descriptions[IRQ_CHAIN_SIZE * IRQ_CHAIN_DEPTH] = { NULL };
const char * get_irq_handler(int irq, int chain) {
if (irq >= IRQ_CHAIN_SIZE) return NULL;
if (chain >= IRQ_CHAIN_DEPTH) return NULL;
return _irq_handler_descriptions[IRQ_CHAIN_SIZE * chain + irq];
}
void irq_install_handler(size_t irq, irq_handler_chain_t handler, const char * desc) {
for (size_t i = 0; i < IRQ_CHAIN_DEPTH; i++) {
if (irq_routines[i * IRQ_CHAIN_SIZE + irq])
continue;
irq_routines[i * IRQ_CHAIN_SIZE + irq] = handler;
_irq_handler_descriptions[i * IRQ_CHAIN_SIZE + irq ] = desc;
break;
}
}
void irq_uninstall_handler(size_t irq) {
for (size_t i = 0; i < IRQ_CHAIN_DEPTH; i++)
irq_routines[i * IRQ_CHAIN_SIZE + irq] = NULL;
}
static struct LoadedModule * find_module(uintptr_t addr, char ** name) {
hashmap_t * modules = modules_get_list();
for (size_t i = 0; i < modules->size; ++i) {
hashmap_entry_t * x = modules->entries[i];
while (x) {
struct LoadedModule * info = x->value;
if (info->baseAddress <= addr && addr <= info->baseAddress + info->loadedSize) {
*name = (char*)x->key;
return info;
}
x = x->next;
}
}
return NULL;
}
static int validate_pointer(uintptr_t base, size_t size) {
uintptr_t end = size ? (base + (size - 1)) : base;
uintptr_t page_base = base >> 12;
uintptr_t page_end = end >> 12;
for (uintptr_t page = page_base; page <= page_end; ++page) {
if ((page & 0xffff800000000) != 0 && (page & 0xffff800000000) != 0xffff800000000) return 0;
union PML * page_entry = mmu_get_page_other(this_core->current_process->thread.page_directory->directory, page << 12);
if (!page_entry) return 0;
if (!page_entry->bits.present) return 0;
}
return 1;
}
extern char end[];
static uintptr_t matching_symbol(uintptr_t ip, char ** name) {
hashmap_t * symbols = ksym_get_map();
uintptr_t best_match = 0;
for (size_t i = 0; i < symbols->size; ++i) {
hashmap_entry_t * x = symbols->entries[i];
while (x) {
void* sym_addr = x->value;
char* sym_name = x->key;
if ((uintptr_t)sym_addr < ip && (uintptr_t)sym_addr > best_match) {
best_match = (uintptr_t)sym_addr;
*name = sym_name;
}
x = x->next;
}
}
return best_match;
}
static void dump_traceback(uintptr_t ip, uintptr_t bp) {
int depth = 0;
int max_depth = 20;
while (bp && ip && depth < max_depth) {
dprintf(" 0x%016zx ", ip);
if (ip >= 0xffffffff80000000UL) {
char * name = NULL;
struct LoadedModule * mod = find_module(ip, &name);
if (mod) {
dprintf("\a in module '%s', base address %#zx (offset %#zx)\n",
name, mod->baseAddress, ip - mod->baseAddress);
} else {
dprintf("\a (unknown)\n");
}
} else if (ip >= (uintptr_t)&end && ip <= 0x800000000000) {
dprintf("\a in userspace\n");
} else if (ip <= (uintptr_t)&end) {
/* Find symbol match */
char * name;
uintptr_t addr = matching_symbol(ip, &name);
if (!addr) {
dprintf("\a (no match)\n");
} else {
dprintf("\a %s+0x%zx\n", name, ip-addr);
}
} else {
dprintf("\a (unknown)\n");
}
if (!validate_pointer(bp, sizeof(uintptr_t)) || !validate_pointer(bp + sizeof(uintptr_t), sizeof(uintptr_t))) {
break;
}
ip = *(uintptr_t*)(bp + sizeof(uintptr_t));
bp = *(uintptr_t*)(bp);
depth++;
}
}
static void safe_dump_traceback(struct regs * r) {
dump_traceback(r->rip, r->rbp);
}
void arch_dump_traceback(void) {
dump_traceback((uintptr_t)arch_dump_traceback+1, (uintptr_t)__builtin_frame_address(0));
}
static void map_more_stack(uintptr_t fromAddr) {
volatile process_t * volatile proc = this_core->current_process;
if (proc->group != 0) {
proc = process_from_pid(proc->group);
}
spin_lock(proc->image.lock);
for (uintptr_t i = fromAddr; i < proc->image.userstack; i += 0x1000) {
union PML * page = mmu_get_page(i, MMU_GET_MAKE);
mmu_frame_allocate(page, MMU_FLAG_WRITABLE);
}
proc->image.userstack = fromAddr;
spin_unlock(proc->image.lock);
}
static void panic(const char * desc, struct regs * r, uintptr_t faulting_address) {
arch_fatal_prepare();
dprintf("\033[31mPanic!\033[0m %s pid=%d (%s) at %#zx\n", desc,
this_core->current_process ? (int)this_core->current_process->id : 0,
this_core->current_process ? this_core->current_process->name : "kernel",
faulting_address
);
dump_regs(r);
safe_dump_traceback(r);
arch_fatal();
}
struct regs * isr_handler(struct regs * r) {
this_core->interrupt_registers = r;
if (r->cs != 0x08 && this_core->current_process) {
this_core->current_process->time_switch = arch_perf_timer();
}
switch (r->int_no) {
case 14: /* Page fault */ {
uintptr_t faulting_address;
asm volatile("mov %%cr2, %0" : "=r"(faulting_address));
if (!this_core->current_process || r->cs == 0x08) {
panic("Page fault in kernel", r, faulting_address);
}
if (faulting_address == 0xFFFFB00F) {
/* Thread exit */
task_exit(0);
break;
}
if (faulting_address == 0x8DEADBEEF) {
return_from_signal_handler();
break;
}
if (faulting_address < 0x800000000000 && faulting_address > 0x700000000000) {
map_more_stack(faulting_address & 0xFFFFffffFFFFf000);
break;
}
send_signal(this_core->current_process->id, SIGSEGV, 1);
break;
}
case 13: /* GPF */ {
if (!this_core->current_process || r->cs == 0x08) {
panic("GPF in kernel", r, 0);
}
send_signal(this_core->current_process->id, SIGSEGV, 1);
break;
}
case 8: /* Double fault */ {
panic("Double fault", r, 0);
break;
}
case 127: /* syscall */ {
syscall_handler(r);
asm volatile("sti");
return r;
}
case 123: {
extern void arch_update_clock(void);
arch_update_clock();
switch_task(1);
return r;
}
case 39: {
/* Spurious interrupt */
break;
}
case 1: {
/* Debug interrupt */
r->rflags &= ~(1 << 8);
if (this_core->current_process->flags & PROC_FLAG_TRACE_SIGNALS) {
ptrace_signal(SIGTRAP, PTRACE_EVENT_SINGLESTEP);
}
return r;
}
default: {
if (r->int_no < 32) {
if (!this_core->current_process || r->cs == 0x08) {
panic("Unexpected interrupt", r, r->int_no);
}
send_signal(this_core->current_process->id, SIGILL, 1);
} else {
for (size_t i = 0; i < IRQ_CHAIN_DEPTH; i++) {
irq_handler_chain_t handler = irq_routines[i * IRQ_CHAIN_SIZE + (r->int_no - 32)];
if (!handler) break;
if (handler(r)) {
goto done;
}
}
irq_ack(r->int_no - 32);
break;
}
}
}
done:
if (this_core->current_process == this_core->kernel_idle_task && process_queue && process_queue->head) {
/* If this is kidle and we got here, instead of finishing the interrupt
* we can just switch task and there will probably be something else
* to run that was awoken by the interrupt. */
switch_next();
}
return r;
}