toaruos/modules/e1000.c
2021-09-08 19:23:59 +09:00

588 lines
16 KiB
C

/**
* @file kernel/net/e1000.c
* @brief Intel Gigabit Ethernet device driver
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2017-2021 K. Lange
*/
#include <kernel/types.h>
#include <kernel/string.h>
#include <kernel/printf.h>
#include <kernel/process.h>
#include <kernel/pci.h>
#include <kernel/mmu.h>
#include <kernel/pipe.h>
#include <kernel/list.h>
#include <kernel/spinlock.h>
#include <kernel/time.h>
#include <kernel/vfs.h>
#include <kernel/mod/net.h>
#include <kernel/net/netif.h>
#include <kernel/net/eth.h>
#include <kernel/module.h>
#include <errno.h>
#include <kernel/arch/x86_64/irq.h>
#include <kernel/net/e1000.h>
#include <sys/socket.h>
#include <net/if.h>
#define INTS (ICR_LSC | ICR_RXO | ICR_RXT0 | ICR_TXQE | ICR_TXDW | ICR_ACK | ICR_RXDMT0 | ICR_SRPD)
struct e1000_nic {
struct EthernetDevice eth;
uint32_t pci_device;
uint16_t deviceid;
uintptr_t mmio_addr;
int irq_number;
int has_eeprom;
int rx_index;
int tx_index;
int link_status;
spin_lock_t net_queue_lock;
spin_lock_t alert_lock;
spin_lock_t tx_lock;
list_t * net_queue;
list_t * rx_wait;
list_t * alert_wait;
uint8_t * rx_virt[E1000_NUM_RX_DESC];
uint8_t * tx_virt[E1000_NUM_TX_DESC];
struct e1000_rx_desc * rx;
struct e1000_tx_desc * tx;
uintptr_t rx_phys;
uintptr_t tx_phys;
};
static int device_count = 0;
static struct e1000_nic * devices[32] = {NULL};
static uint32_t mmio_read32(uintptr_t addr) {
return *((volatile uint32_t*)(addr));
}
static void mmio_write32(uintptr_t addr, uint32_t val) {
(*((volatile uint32_t*)(addr))) = val;
}
static void write_command(struct e1000_nic * device, uint16_t addr, uint32_t val) {
mmio_write32(device->mmio_addr + addr, val);
}
static uint32_t read_command(struct e1000_nic * device, uint16_t addr) {
return mmio_read32(device->mmio_addr + addr);
}
static void delay_yield(size_t subticks) {
unsigned long s, ss;
relative_time(0, subticks, &s, &ss);
sleep_until((process_t *)this_core->current_process, s, ss);
switch_task(0);
}
static void enqueue_packet(struct e1000_nic * device, void * buffer) {
spin_lock(device->net_queue_lock);
list_insert(device->net_queue, buffer);
spin_unlock(device->net_queue_lock);
}
static struct ethernet_packet * dequeue_packet(struct e1000_nic * device) {
while (!device->net_queue->length) {
sleep_on(device->rx_wait);
}
spin_lock(device->net_queue_lock);
node_t * n = list_dequeue(device->net_queue);
void* value = n->value;
free(n);
spin_unlock(device->net_queue_lock);
return value;
}
static int eeprom_detect(struct e1000_nic * device) {
/* Definitely not */
if (device->deviceid == 0x10d3) return 0;
write_command(device, E1000_REG_EEPROM, 1);
for (int i = 0; i < 100000 && !device->has_eeprom; ++i) {
uint32_t val = read_command(device, E1000_REG_EEPROM);
if (val & 0x10) device->has_eeprom = 1;
}
return 0;
}
static uint16_t eeprom_read(struct e1000_nic * device, uint8_t addr) {
uint32_t temp = 0;
write_command(device, E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
while (!((temp = read_command(device, E1000_REG_EEPROM)) & (1 << 4)));
return (uint16_t)((temp >> 16) & 0xFFFF);
}
static void write_mac(struct e1000_nic * device) {
uint32_t low, high;
memcpy(&low, &device->eth.mac[0], 4);
memcpy(&high,&device->eth.mac[4], 2);
memset((uint8_t *)&high + 2, 0, 2);
high |= 0x80000000;
write_command(device, E1000_REG_RXADDR + 0, low);
write_command(device, E1000_REG_RXADDR + 4, high);
}
static void read_mac(struct e1000_nic * device) {
if (device->has_eeprom) {
uint32_t t;
t = eeprom_read(device, 0);
device->eth.mac[0] = t & 0xFF;
device->eth.mac[1] = t >> 8;
t = eeprom_read(device, 1);
device->eth.mac[2] = t & 0xFF;
device->eth.mac[3] = t >> 8;
t = eeprom_read(device, 2);
device->eth.mac[4] = t & 0xFF;
device->eth.mac[5] = t >> 8;
} else {
uint32_t mac_addr_low = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR);
uint32_t mac_addr_high = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR + 4);
device->eth.mac[0] = (mac_addr_low >> 0 ) & 0xFF;
device->eth.mac[1] = (mac_addr_low >> 8 ) & 0xFF;
device->eth.mac[2] = (mac_addr_low >> 16) & 0xFF;
device->eth.mac[3] = (mac_addr_low >> 24) & 0xFF;
device->eth.mac[4] = (mac_addr_high>> 0 ) & 0xFF;
device->eth.mac[5] = (mac_addr_high>> 8 ) & 0xFF;
}
}
static void e1000_alert_waiters(struct e1000_nic * nic) {
spin_lock(nic->alert_lock);
while (nic->alert_wait->head) {
node_t * node = list_dequeue(nic->alert_wait);
process_t * p = node->value;
free(node);
spin_unlock(nic->alert_lock);
process_alert_node(p, nic->eth.device_node);
spin_lock(nic->alert_lock);
}
spin_unlock(nic->alert_lock);
}
static void e1000_handle(struct e1000_nic * nic, uint32_t status) {
if (status & ICR_LSC) {
nic->link_status= (read_command(nic, E1000_REG_STATUS) & (1 << 1));
}
#if 0
if (status & ICR_TXQE) {
/* Transmit queue empty; nothing to do. */
}
if (status & ICR_TXDW) {
/* transmit descriptor written */
}
if (status & (ICR_RXO | ICR_RXT0 | ICR_ACK)) {
/* Receive ack */
}
#endif
int current_tail = read_command(nic, E1000_REG_RXDESCTAIL);
int did_something = 0;
int i = (current_tail + 1) % E1000_NUM_RX_DESC;
while (1) {
/* Don't let the head run out... */
int current_head = read_command(nic, E1000_REG_RXDESCHEAD);
if (i == current_head) break; /* Don't receive the head... */
if (nic->rx[i].status & 0x01) {
uint8_t * pbuf = (uint8_t *)nic->rx_virt[i];
uint16_t plen = nic->rx[i].length;
void * packet = malloc(8192);
if (plen > 8192) {
printf("??? plen is too big\n");
}
memcpy(packet, pbuf, plen);
nic->rx[i].status = 0;
enqueue_packet(nic, packet);
write_command(nic, E1000_REG_RXDESCTAIL, i);
did_something = 1;
} else {
break;
}
i = (i + 1) % E1000_NUM_RX_DESC;
}
if (did_something) {
wakeup_queue(nic->rx_wait);
e1000_alert_waiters(nic);
}
}
static int irq_handler(struct regs *r) {
int irq = r->int_no - 32;
int handled = 0;
for (int i = 0; i < device_count; ++i) {
if (devices[i]->irq_number == irq) {
uint32_t status = read_command(devices[i], E1000_REG_ICR);
if (status) {
write_command(devices[i], 0x00D8,INTS);
e1000_handle(devices[i], status);
read_command(devices[i], E1000_REG_ICR);
if (!handled) {
handled = 1;
irq_ack(irq);
}
write_command(devices[i], 0x00D0,INTS);
}
}
}
return handled;
}
static void send_packet(struct e1000_nic * device, uint8_t* payload, size_t payload_size) {
spin_lock(device->tx_lock);
device->tx_index = read_command(device, E1000_REG_TXDESCTAIL);
while ((device->tx[device->tx_index].status & 1) != 1) {
if (device->tx[device->tx_index].length == 0) break;
printf("warning: tx overrun; yielding until descriptor is available; tx index %d: status = %x; length = %x\n",
device->tx_index,
device->tx[device->tx_index].status,
device->tx[device->tx_index].length);
switch_task(1);
}
memcpy(device->tx_virt[device->tx_index], payload, payload_size);
device->tx[device->tx_index].length = payload_size;
device->tx[device->tx_index].cmd = CMD_EOP | CMD_IFCS | CMD_RS; //| CMD_RPS;
device->tx[device->tx_index].status = 0;
device->tx_index = (device->tx_index + 1) % E1000_NUM_TX_DESC;
write_command(device, E1000_REG_TXDESCTAIL, device->tx_index);
spin_unlock(device->tx_lock);
}
static void init_rx(struct e1000_nic * device) {
write_command(device, E1000_REG_RXDESCLO, device->rx_phys);
write_command(device, E1000_REG_RXDESCHI, 0);
write_command(device, E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct e1000_rx_desc));
write_command(device, E1000_REG_RXDESCHEAD, 0);
write_command(device, E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
device->rx_index = 0;
write_command(device, E1000_REG_RCTRL,
RCTL_EN |
(1 << 2) | /* store bad packets */
(1 << 4) | /* multicast promiscuous */
(1 << 15) | /* broadcast accept */
(1 << 26) /* strip CRC */
);
}
static void init_tx(struct e1000_nic * device) {
write_command(device, E1000_REG_TXDESCLO, device->tx_phys);
write_command(device, E1000_REG_TXDESCHI, 0);
write_command(device, E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct e1000_tx_desc));
write_command(device, E1000_REG_TXDESCHEAD, 0);
write_command(device, E1000_REG_TXDESCTAIL, 0);
device->tx_index = 0;
write_command(device, E1000_REG_TCTRL,
TCTL_EN |
TCTL_PSP |
read_command(device, E1000_REG_TCTRL));
}
extern void net_arp_ask(uint32_t addr, fs_node_t * fsnic);
static int ioctl_e1000(fs_node_t * node, unsigned long request, void * argp) {
struct e1000_nic * nic = node->device;
switch (request) {
case SIOCGIFHWADDR:
/* fill argp with mac */
memcpy(argp, nic->eth.mac, 6);
return 0;
case SIOCGIFADDR:
if (nic->eth.ipv4_addr == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_addr, sizeof(nic->eth.ipv4_addr));
return 0;
case SIOCSIFADDR:
memcpy(&nic->eth.ipv4_addr, argp, sizeof(nic->eth.ipv4_addr));
return 0;
case SIOCGIFNETMASK:
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_subnet, sizeof(nic->eth.ipv4_subnet));
return 0;
case SIOCSIFNETMASK:
memcpy(&nic->eth.ipv4_subnet, argp, sizeof(nic->eth.ipv4_subnet));
return 0;
case SIOCGIFGATEWAY:
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_gateway, sizeof(nic->eth.ipv4_gateway));
return 0;
case SIOCSIFGATEWAY:
memcpy(&nic->eth.ipv4_gateway, argp, sizeof(nic->eth.ipv4_gateway));
net_arp_ask(nic->eth.ipv4_gateway, node);
return 0;
case SIOCGIFADDR6:
return -ENOENT;
case SIOCSIFADDR6:
memcpy(&nic->eth.ipv6_addr, argp, sizeof(nic->eth.ipv6_addr));
return 0;
case SIOCGIFFLAGS: {
uint32_t * flags = argp;
*flags = IFF_RUNNING;
if (nic->link_status) *flags |= IFF_UP;
/* We turn these on in our init_tx */
*flags |= IFF_BROADCAST;
*flags |= IFF_MULTICAST;
return 0;
}
case SIOCGIFMTU: {
uint32_t * mtu = argp;
*mtu = nic->eth.mtu;
return 0;
}
default:
return -EINVAL;
}
}
static ssize_t write_e1000(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) {
struct e1000_nic * nic = node->device;
/* write packet */
send_packet(nic, buffer, size);
return size;
}
static int check_e1000(fs_node_t *node) {
struct e1000_nic * nic = node->device;
return nic->net_queue->head ? 0 : 1;
}
static int wait_e1000(fs_node_t *node, void * process) {
struct e1000_nic * nic = node->device;
spin_lock(nic->alert_lock);
if (!list_find(nic->alert_wait, process)) {
list_insert(nic->alert_wait, process);
}
list_insert(((process_t *)process)->node_waits, nic->eth.device_node);
spin_unlock(nic->alert_lock);
return 0;
}
static void e1000_process(void * data) {
struct e1000_nic * nic = data;
while (1) {
struct ethernet_packet * packet = dequeue_packet(nic);
net_eth_handle(packet, nic->eth.device_node);
}
}
static void e1000_init(struct e1000_nic * nic) {
uint32_t e1000_device_pci = nic->pci_device;
nic->rx_phys = mmu_allocate_a_frame() << 12;
if (nic->rx_phys == 0) {
printf("e1000[%s]: unable to allocate memory for buffers\n", nic->eth.if_name);
switch_task(0);
}
nic->rx = mmu_map_from_physical(nic->rx_phys); //mmu_map_mmio_region(nic->rx_phys, 4096);
nic->tx_phys = nic->rx_phys + 512;
nic->tx = mmu_map_from_physical(nic->tx_phys); //mmu_map_mmio_region(nic->tx_phys, 4096);
memset(nic->rx, 0, 4096);
memset(nic->tx, 0, 4096);
/* Allocate buffers */
for (int i = 0; i < E1000_NUM_RX_DESC; ++i) {
nic->rx[i].addr = mmu_allocate_n_frames(2) << 12;
if (nic->rx[i].addr == 0) {
printf("e1000[%s]: unable to allocate memory for receive buffer\n", nic->eth.if_name);
switch_task(0);
}
//nic->rx_virt[i] = mmu_map_from_physical(nic->rx[i].addr);
nic->rx_virt[i] = mmu_map_mmio_region(nic->rx[i].addr, 8192);
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->rx_virt[i],0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->rx_virt[i]+4096,0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
nic->rx[i].status = 0;
}
for (int i = 0; i < E1000_NUM_TX_DESC; ++i) {
nic->tx[i].addr = mmu_allocate_n_frames(2) << 12;
if (nic->tx[i].addr == 0) {
printf("e1000[%s]: unable to allocate memory for receive buffer\n", nic->eth.if_name);
switch_task(0);
}
//nic->tx_virt[i] = mmu_map_from_physical(nic->tx[i].addr);
nic->tx_virt[i] = mmu_map_mmio_region(nic->tx[i].addr, 8192);
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->tx_virt[i],0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->tx_virt[i]+4096,0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
memset(nic->tx_virt[i], 0, 8192);
nic->tx[i].status = 0;
nic->tx[i].cmd = (1 << 0);
}
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
command_reg |= (1 << 2);
command_reg |= (1 << 0);
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
delay_yield(10000);
/* Is this size enough? */
uint32_t initial_bar = pci_read_field(e1000_device_pci, PCI_BAR0, 4);
nic->mmio_addr = (uintptr_t)mmu_map_mmio_region(initial_bar, 0x8000);
eeprom_detect(nic);
read_mac(nic);
write_mac(nic);
uint32_t ctrl = read_command(nic, E1000_REG_CTRL);
/* reset phy */
write_command(nic, E1000_REG_CTRL, ctrl | (0x80000000));
read_command(nic, E1000_REG_STATUS);
delay_yield(10000);
/* reset mac */
write_command(nic, E1000_REG_CTRL, ctrl | (0x04000000));
read_command(nic, E1000_REG_STATUS);
delay_yield(10000);
/* Reload EEPROM */
write_command(nic, E1000_REG_CTRL, ctrl | (0x00002000));
read_command(nic, E1000_REG_STATUS);
delay_yield(20000);
/* initialize */
write_command(nic, E1000_REG_CTRL, ctrl | (1 << 26));
delay_yield(10000);
uint32_t status = read_command(nic, E1000_REG_CTRL);
status |= (1 << 5); /* set auto speed detection */
status |= (1 << 6); /* set link up */
status &= ~(1 << 3); /* unset link reset */
status &= ~(1UL << 31UL); /* unset phy reset */
status &= ~(1 << 7); /* unset invert loss-of-signal */
write_command(nic, E1000_REG_CTRL, status);
/* Disables flow control */
write_command(nic, 0x0028, 0);
write_command(nic, 0x002c, 0);
write_command(nic, 0x0030, 0);
write_command(nic, 0x0170, 0);
/* Unset flow control */
status = read_command(nic, E1000_REG_CTRL);
status &= ~(1 << 30);
write_command(nic, E1000_REG_CTRL, status);
delay_yield(10000);
nic->net_queue = list_create("e1000 net queue", nic);
nic->rx_wait = list_create("e1000 rx sem", nic);
nic->alert_wait = list_create("e1000 select waiters", nic);
nic->irq_number = pci_get_interrupt(e1000_device_pci);
irq_install_handler(nic->irq_number, irq_handler, nic->eth.if_name);
for (int i = 0; i < 128; ++i) {
write_command(nic, 0x5200 + i * 4, 0);
}
for (int i = 0; i < 64; ++i) {
read_command(nic, 0x4000 + i * 4);
}
init_rx(nic);
init_tx(nic);
/* Twiddle interrupts */
write_command(nic, 0x00D0, 0xFFFFFFFF);
write_command(nic, 0x00D8, 0xFFFFFFFF);
write_command(nic, 0x00D0, INTS);
delay_yield(10000);
nic->link_status = (read_command(nic, E1000_REG_STATUS) & (1 << 1));
nic->eth.device_node = calloc(sizeof(fs_node_t),1);
snprintf(nic->eth.device_node->name, 100, "%s", nic->eth.if_name);
nic->eth.device_node->flags = FS_BLOCKDEVICE; /* NETDEVICE? */
nic->eth.device_node->mask = 0666; /* temporary; shouldn't be doing this with these device files */
nic->eth.device_node->ioctl = ioctl_e1000;
nic->eth.device_node->write = write_e1000;
nic->eth.device_node->selectcheck = check_e1000;
nic->eth.device_node->selectwait = wait_e1000;
nic->eth.device_node->device = nic;
nic->eth.mtu = 1500; /* guess */
net_add_interface(nic->eth.if_name, nic->eth.device_node);
char worker_name[34];
snprintf(worker_name, 33, "[%s]", nic->eth.if_name);
spawn_worker_thread(e1000_process, worker_name, nic);
}
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * found) {
if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea || deviceid == 0x10d3)) {
/* Allocate a device */
struct e1000_nic * nic = calloc(1,sizeof(struct e1000_nic));
nic->pci_device = device;
nic->deviceid = deviceid;
devices[device_count++] = nic;
snprintf(nic->eth.if_name, 31,
"enp%ds%d",
(int)pci_extract_bus(device),
(int)pci_extract_slot(device));
e1000_init(nic);
*(int*)found = 1;
}
}
static int e1000_install(int argc, char * argv[]) {
uint32_t found = 0;
pci_scan(&find_e1000, -1, &found);
if (!found) {
/* TODO: Clean up? Remove ourselves? */
return -ENODEV;
}
return 0;
}
static int fini(void) {
/* TODO: Uninstall device */
return 0;
}
struct Module metadata = {
.name = "e1000",
.init = e1000_install,
.fini = fini,
};