588 lines
16 KiB
C
588 lines
16 KiB
C
/**
|
|
* @file kernel/net/e1000.c
|
|
* @brief Intel Gigabit Ethernet device driver
|
|
*
|
|
* @copyright
|
|
* This file is part of ToaruOS and is released under the terms
|
|
* of the NCSA / University of Illinois License - see LICENSE.md
|
|
* Copyright (C) 2017-2021 K. Lange
|
|
*/
|
|
#include <kernel/types.h>
|
|
#include <kernel/string.h>
|
|
#include <kernel/printf.h>
|
|
#include <kernel/process.h>
|
|
#include <kernel/pci.h>
|
|
#include <kernel/mmu.h>
|
|
#include <kernel/pipe.h>
|
|
#include <kernel/list.h>
|
|
#include <kernel/spinlock.h>
|
|
#include <kernel/time.h>
|
|
#include <kernel/vfs.h>
|
|
#include <kernel/mod/net.h>
|
|
#include <kernel/net/netif.h>
|
|
#include <kernel/net/eth.h>
|
|
#include <kernel/module.h>
|
|
#include <errno.h>
|
|
|
|
#include <kernel/arch/x86_64/irq.h>
|
|
#include <kernel/net/e1000.h>
|
|
|
|
#include <sys/socket.h>
|
|
#include <net/if.h>
|
|
|
|
#define INTS (ICR_LSC | ICR_RXO | ICR_RXT0 | ICR_TXQE | ICR_TXDW | ICR_ACK | ICR_RXDMT0 | ICR_SRPD)
|
|
|
|
struct e1000_nic {
|
|
struct EthernetDevice eth;
|
|
uint32_t pci_device;
|
|
uint16_t deviceid;
|
|
uintptr_t mmio_addr;
|
|
int irq_number;
|
|
|
|
int has_eeprom;
|
|
int rx_index;
|
|
int tx_index;
|
|
int link_status;
|
|
|
|
spin_lock_t net_queue_lock;
|
|
spin_lock_t alert_lock;
|
|
spin_lock_t tx_lock;
|
|
list_t * net_queue;
|
|
list_t * rx_wait;
|
|
list_t * alert_wait;
|
|
|
|
uint8_t * rx_virt[E1000_NUM_RX_DESC];
|
|
uint8_t * tx_virt[E1000_NUM_TX_DESC];
|
|
struct e1000_rx_desc * rx;
|
|
struct e1000_tx_desc * tx;
|
|
uintptr_t rx_phys;
|
|
uintptr_t tx_phys;
|
|
};
|
|
|
|
static int device_count = 0;
|
|
static struct e1000_nic * devices[32] = {NULL};
|
|
|
|
static uint32_t mmio_read32(uintptr_t addr) {
|
|
return *((volatile uint32_t*)(addr));
|
|
}
|
|
static void mmio_write32(uintptr_t addr, uint32_t val) {
|
|
(*((volatile uint32_t*)(addr))) = val;
|
|
}
|
|
|
|
static void write_command(struct e1000_nic * device, uint16_t addr, uint32_t val) {
|
|
mmio_write32(device->mmio_addr + addr, val);
|
|
}
|
|
|
|
static uint32_t read_command(struct e1000_nic * device, uint16_t addr) {
|
|
return mmio_read32(device->mmio_addr + addr);
|
|
}
|
|
|
|
static void delay_yield(size_t subticks) {
|
|
unsigned long s, ss;
|
|
relative_time(0, subticks, &s, &ss);
|
|
sleep_until((process_t *)this_core->current_process, s, ss);
|
|
switch_task(0);
|
|
}
|
|
|
|
static void enqueue_packet(struct e1000_nic * device, void * buffer) {
|
|
spin_lock(device->net_queue_lock);
|
|
list_insert(device->net_queue, buffer);
|
|
spin_unlock(device->net_queue_lock);
|
|
}
|
|
|
|
static struct ethernet_packet * dequeue_packet(struct e1000_nic * device) {
|
|
while (!device->net_queue->length) {
|
|
sleep_on(device->rx_wait);
|
|
}
|
|
|
|
spin_lock(device->net_queue_lock);
|
|
node_t * n = list_dequeue(device->net_queue);
|
|
void* value = n->value;
|
|
free(n);
|
|
spin_unlock(device->net_queue_lock);
|
|
|
|
return value;
|
|
}
|
|
|
|
static int eeprom_detect(struct e1000_nic * device) {
|
|
|
|
/* Definitely not */
|
|
if (device->deviceid == 0x10d3) return 0;
|
|
|
|
write_command(device, E1000_REG_EEPROM, 1);
|
|
|
|
for (int i = 0; i < 100000 && !device->has_eeprom; ++i) {
|
|
uint32_t val = read_command(device, E1000_REG_EEPROM);
|
|
if (val & 0x10) device->has_eeprom = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t eeprom_read(struct e1000_nic * device, uint8_t addr) {
|
|
uint32_t temp = 0;
|
|
write_command(device, E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
|
|
while (!((temp = read_command(device, E1000_REG_EEPROM)) & (1 << 4)));
|
|
return (uint16_t)((temp >> 16) & 0xFFFF);
|
|
}
|
|
|
|
static void write_mac(struct e1000_nic * device) {
|
|
uint32_t low, high;
|
|
memcpy(&low, &device->eth.mac[0], 4);
|
|
memcpy(&high,&device->eth.mac[4], 2);
|
|
memset((uint8_t *)&high + 2, 0, 2);
|
|
high |= 0x80000000;
|
|
write_command(device, E1000_REG_RXADDR + 0, low);
|
|
write_command(device, E1000_REG_RXADDR + 4, high);
|
|
}
|
|
|
|
static void read_mac(struct e1000_nic * device) {
|
|
if (device->has_eeprom) {
|
|
uint32_t t;
|
|
t = eeprom_read(device, 0);
|
|
device->eth.mac[0] = t & 0xFF;
|
|
device->eth.mac[1] = t >> 8;
|
|
t = eeprom_read(device, 1);
|
|
device->eth.mac[2] = t & 0xFF;
|
|
device->eth.mac[3] = t >> 8;
|
|
t = eeprom_read(device, 2);
|
|
device->eth.mac[4] = t & 0xFF;
|
|
device->eth.mac[5] = t >> 8;
|
|
} else {
|
|
uint32_t mac_addr_low = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR);
|
|
uint32_t mac_addr_high = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR + 4);
|
|
device->eth.mac[0] = (mac_addr_low >> 0 ) & 0xFF;
|
|
device->eth.mac[1] = (mac_addr_low >> 8 ) & 0xFF;
|
|
device->eth.mac[2] = (mac_addr_low >> 16) & 0xFF;
|
|
device->eth.mac[3] = (mac_addr_low >> 24) & 0xFF;
|
|
device->eth.mac[4] = (mac_addr_high>> 0 ) & 0xFF;
|
|
device->eth.mac[5] = (mac_addr_high>> 8 ) & 0xFF;
|
|
}
|
|
}
|
|
|
|
static void e1000_alert_waiters(struct e1000_nic * nic) {
|
|
spin_lock(nic->alert_lock);
|
|
while (nic->alert_wait->head) {
|
|
node_t * node = list_dequeue(nic->alert_wait);
|
|
process_t * p = node->value;
|
|
free(node);
|
|
spin_unlock(nic->alert_lock);
|
|
process_alert_node(p, nic->eth.device_node);
|
|
spin_lock(nic->alert_lock);
|
|
}
|
|
spin_unlock(nic->alert_lock);
|
|
}
|
|
|
|
static void e1000_handle(struct e1000_nic * nic, uint32_t status) {
|
|
if (status & ICR_LSC) {
|
|
nic->link_status= (read_command(nic, E1000_REG_STATUS) & (1 << 1));
|
|
}
|
|
|
|
#if 0
|
|
if (status & ICR_TXQE) {
|
|
/* Transmit queue empty; nothing to do. */
|
|
}
|
|
|
|
if (status & ICR_TXDW) {
|
|
/* transmit descriptor written */
|
|
}
|
|
|
|
if (status & (ICR_RXO | ICR_RXT0 | ICR_ACK)) {
|
|
/* Receive ack */
|
|
}
|
|
#endif
|
|
|
|
int current_tail = read_command(nic, E1000_REG_RXDESCTAIL);
|
|
int did_something = 0;
|
|
|
|
int i = (current_tail + 1) % E1000_NUM_RX_DESC;
|
|
while (1) {
|
|
/* Don't let the head run out... */
|
|
int current_head = read_command(nic, E1000_REG_RXDESCHEAD);
|
|
if (i == current_head) break; /* Don't receive the head... */
|
|
if (nic->rx[i].status & 0x01) {
|
|
uint8_t * pbuf = (uint8_t *)nic->rx_virt[i];
|
|
uint16_t plen = nic->rx[i].length;
|
|
|
|
void * packet = malloc(8192);
|
|
if (plen > 8192) {
|
|
printf("??? plen is too big\n");
|
|
}
|
|
memcpy(packet, pbuf, plen);
|
|
|
|
nic->rx[i].status = 0;
|
|
|
|
enqueue_packet(nic, packet);
|
|
|
|
write_command(nic, E1000_REG_RXDESCTAIL, i);
|
|
did_something = 1;
|
|
} else {
|
|
break;
|
|
}
|
|
i = (i + 1) % E1000_NUM_RX_DESC;
|
|
}
|
|
|
|
if (did_something) {
|
|
wakeup_queue(nic->rx_wait);
|
|
e1000_alert_waiters(nic);
|
|
}
|
|
}
|
|
|
|
static int irq_handler(struct regs *r) {
|
|
int irq = r->int_no - 32;
|
|
int handled = 0;
|
|
|
|
for (int i = 0; i < device_count; ++i) {
|
|
if (devices[i]->irq_number == irq) {
|
|
uint32_t status = read_command(devices[i], E1000_REG_ICR);
|
|
if (status) {
|
|
write_command(devices[i], 0x00D8,INTS);
|
|
e1000_handle(devices[i], status);
|
|
read_command(devices[i], E1000_REG_ICR);
|
|
if (!handled) {
|
|
handled = 1;
|
|
irq_ack(irq);
|
|
}
|
|
write_command(devices[i], 0x00D0,INTS);
|
|
}
|
|
}
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
static void send_packet(struct e1000_nic * device, uint8_t* payload, size_t payload_size) {
|
|
spin_lock(device->tx_lock);
|
|
device->tx_index = read_command(device, E1000_REG_TXDESCTAIL);
|
|
|
|
while ((device->tx[device->tx_index].status & 1) != 1) {
|
|
if (device->tx[device->tx_index].length == 0) break;
|
|
printf("warning: tx overrun; yielding until descriptor is available; tx index %d: status = %x; length = %x\n",
|
|
device->tx_index,
|
|
device->tx[device->tx_index].status,
|
|
device->tx[device->tx_index].length);
|
|
switch_task(1);
|
|
}
|
|
|
|
memcpy(device->tx_virt[device->tx_index], payload, payload_size);
|
|
device->tx[device->tx_index].length = payload_size;
|
|
device->tx[device->tx_index].cmd = CMD_EOP | CMD_IFCS | CMD_RS; //| CMD_RPS;
|
|
device->tx[device->tx_index].status = 0;
|
|
|
|
device->tx_index = (device->tx_index + 1) % E1000_NUM_TX_DESC;
|
|
write_command(device, E1000_REG_TXDESCTAIL, device->tx_index);
|
|
spin_unlock(device->tx_lock);
|
|
}
|
|
|
|
static void init_rx(struct e1000_nic * device) {
|
|
write_command(device, E1000_REG_RXDESCLO, device->rx_phys);
|
|
write_command(device, E1000_REG_RXDESCHI, 0);
|
|
write_command(device, E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct e1000_rx_desc));
|
|
write_command(device, E1000_REG_RXDESCHEAD, 0);
|
|
write_command(device, E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
|
|
|
|
device->rx_index = 0;
|
|
|
|
write_command(device, E1000_REG_RCTRL,
|
|
RCTL_EN |
|
|
(1 << 2) | /* store bad packets */
|
|
(1 << 4) | /* multicast promiscuous */
|
|
(1 << 15) | /* broadcast accept */
|
|
(1 << 26) /* strip CRC */
|
|
);
|
|
}
|
|
|
|
static void init_tx(struct e1000_nic * device) {
|
|
write_command(device, E1000_REG_TXDESCLO, device->tx_phys);
|
|
write_command(device, E1000_REG_TXDESCHI, 0);
|
|
write_command(device, E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct e1000_tx_desc));
|
|
write_command(device, E1000_REG_TXDESCHEAD, 0);
|
|
write_command(device, E1000_REG_TXDESCTAIL, 0);
|
|
|
|
device->tx_index = 0;
|
|
|
|
write_command(device, E1000_REG_TCTRL,
|
|
TCTL_EN |
|
|
TCTL_PSP |
|
|
read_command(device, E1000_REG_TCTRL));
|
|
}
|
|
|
|
extern void net_arp_ask(uint32_t addr, fs_node_t * fsnic);
|
|
|
|
static int ioctl_e1000(fs_node_t * node, unsigned long request, void * argp) {
|
|
struct e1000_nic * nic = node->device;
|
|
|
|
switch (request) {
|
|
case SIOCGIFHWADDR:
|
|
/* fill argp with mac */
|
|
memcpy(argp, nic->eth.mac, 6);
|
|
return 0;
|
|
|
|
case SIOCGIFADDR:
|
|
if (nic->eth.ipv4_addr == 0) return -ENOENT;
|
|
memcpy(argp, &nic->eth.ipv4_addr, sizeof(nic->eth.ipv4_addr));
|
|
return 0;
|
|
case SIOCSIFADDR:
|
|
memcpy(&nic->eth.ipv4_addr, argp, sizeof(nic->eth.ipv4_addr));
|
|
return 0;
|
|
case SIOCGIFNETMASK:
|
|
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
|
|
memcpy(argp, &nic->eth.ipv4_subnet, sizeof(nic->eth.ipv4_subnet));
|
|
return 0;
|
|
case SIOCSIFNETMASK:
|
|
memcpy(&nic->eth.ipv4_subnet, argp, sizeof(nic->eth.ipv4_subnet));
|
|
return 0;
|
|
case SIOCGIFGATEWAY:
|
|
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
|
|
memcpy(argp, &nic->eth.ipv4_gateway, sizeof(nic->eth.ipv4_gateway));
|
|
return 0;
|
|
case SIOCSIFGATEWAY:
|
|
memcpy(&nic->eth.ipv4_gateway, argp, sizeof(nic->eth.ipv4_gateway));
|
|
net_arp_ask(nic->eth.ipv4_gateway, node);
|
|
return 0;
|
|
|
|
case SIOCGIFADDR6:
|
|
return -ENOENT;
|
|
case SIOCSIFADDR6:
|
|
memcpy(&nic->eth.ipv6_addr, argp, sizeof(nic->eth.ipv6_addr));
|
|
return 0;
|
|
|
|
case SIOCGIFFLAGS: {
|
|
uint32_t * flags = argp;
|
|
*flags = IFF_RUNNING;
|
|
if (nic->link_status) *flags |= IFF_UP;
|
|
/* We turn these on in our init_tx */
|
|
*flags |= IFF_BROADCAST;
|
|
*flags |= IFF_MULTICAST;
|
|
return 0;
|
|
}
|
|
|
|
case SIOCGIFMTU: {
|
|
uint32_t * mtu = argp;
|
|
*mtu = nic->eth.mtu;
|
|
return 0;
|
|
}
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static ssize_t write_e1000(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) {
|
|
struct e1000_nic * nic = node->device;
|
|
/* write packet */
|
|
send_packet(nic, buffer, size);
|
|
return size;
|
|
}
|
|
|
|
static int check_e1000(fs_node_t *node) {
|
|
struct e1000_nic * nic = node->device;
|
|
return nic->net_queue->head ? 0 : 1;
|
|
}
|
|
|
|
static int wait_e1000(fs_node_t *node, void * process) {
|
|
struct e1000_nic * nic = node->device;
|
|
spin_lock(nic->alert_lock);
|
|
if (!list_find(nic->alert_wait, process)) {
|
|
list_insert(nic->alert_wait, process);
|
|
}
|
|
list_insert(((process_t *)process)->node_waits, nic->eth.device_node);
|
|
spin_unlock(nic->alert_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void e1000_process(void * data) {
|
|
struct e1000_nic * nic = data;
|
|
while (1) {
|
|
struct ethernet_packet * packet = dequeue_packet(nic);
|
|
net_eth_handle(packet, nic->eth.device_node);
|
|
}
|
|
}
|
|
|
|
static void e1000_init(struct e1000_nic * nic) {
|
|
uint32_t e1000_device_pci = nic->pci_device;
|
|
|
|
nic->rx_phys = mmu_allocate_a_frame() << 12;
|
|
if (nic->rx_phys == 0) {
|
|
printf("e1000[%s]: unable to allocate memory for buffers\n", nic->eth.if_name);
|
|
switch_task(0);
|
|
}
|
|
nic->rx = mmu_map_from_physical(nic->rx_phys); //mmu_map_mmio_region(nic->rx_phys, 4096);
|
|
nic->tx_phys = nic->rx_phys + 512;
|
|
nic->tx = mmu_map_from_physical(nic->tx_phys); //mmu_map_mmio_region(nic->tx_phys, 4096);
|
|
|
|
memset(nic->rx, 0, 4096);
|
|
memset(nic->tx, 0, 4096);
|
|
|
|
/* Allocate buffers */
|
|
for (int i = 0; i < E1000_NUM_RX_DESC; ++i) {
|
|
nic->rx[i].addr = mmu_allocate_n_frames(2) << 12;
|
|
if (nic->rx[i].addr == 0) {
|
|
printf("e1000[%s]: unable to allocate memory for receive buffer\n", nic->eth.if_name);
|
|
switch_task(0);
|
|
}
|
|
//nic->rx_virt[i] = mmu_map_from_physical(nic->rx[i].addr);
|
|
nic->rx_virt[i] = mmu_map_mmio_region(nic->rx[i].addr, 8192);
|
|
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->rx_virt[i],0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
|
|
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->rx_virt[i]+4096,0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
|
|
nic->rx[i].status = 0;
|
|
}
|
|
|
|
for (int i = 0; i < E1000_NUM_TX_DESC; ++i) {
|
|
nic->tx[i].addr = mmu_allocate_n_frames(2) << 12;
|
|
if (nic->tx[i].addr == 0) {
|
|
printf("e1000[%s]: unable to allocate memory for receive buffer\n", nic->eth.if_name);
|
|
switch_task(0);
|
|
}
|
|
//nic->tx_virt[i] = mmu_map_from_physical(nic->tx[i].addr);
|
|
nic->tx_virt[i] = mmu_map_mmio_region(nic->tx[i].addr, 8192);
|
|
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->tx_virt[i],0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
|
|
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->tx_virt[i]+4096,0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
|
|
memset(nic->tx_virt[i], 0, 8192);
|
|
nic->tx[i].status = 0;
|
|
nic->tx[i].cmd = (1 << 0);
|
|
}
|
|
|
|
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
|
|
command_reg |= (1 << 2);
|
|
command_reg |= (1 << 0);
|
|
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
|
|
|
|
delay_yield(10000);
|
|
|
|
/* Is this size enough? */
|
|
uint32_t initial_bar = pci_read_field(e1000_device_pci, PCI_BAR0, 4);
|
|
nic->mmio_addr = (uintptr_t)mmu_map_mmio_region(initial_bar, 0x8000);
|
|
|
|
eeprom_detect(nic);
|
|
read_mac(nic);
|
|
write_mac(nic);
|
|
uint32_t ctrl = read_command(nic, E1000_REG_CTRL);
|
|
|
|
/* reset phy */
|
|
write_command(nic, E1000_REG_CTRL, ctrl | (0x80000000));
|
|
read_command(nic, E1000_REG_STATUS);
|
|
delay_yield(10000);
|
|
|
|
/* reset mac */
|
|
write_command(nic, E1000_REG_CTRL, ctrl | (0x04000000));
|
|
read_command(nic, E1000_REG_STATUS);
|
|
delay_yield(10000);
|
|
|
|
/* Reload EEPROM */
|
|
write_command(nic, E1000_REG_CTRL, ctrl | (0x00002000));
|
|
read_command(nic, E1000_REG_STATUS);
|
|
delay_yield(20000);
|
|
|
|
/* initialize */
|
|
write_command(nic, E1000_REG_CTRL, ctrl | (1 << 26));
|
|
delay_yield(10000);
|
|
|
|
uint32_t status = read_command(nic, E1000_REG_CTRL);
|
|
status |= (1 << 5); /* set auto speed detection */
|
|
status |= (1 << 6); /* set link up */
|
|
status &= ~(1 << 3); /* unset link reset */
|
|
status &= ~(1UL << 31UL); /* unset phy reset */
|
|
status &= ~(1 << 7); /* unset invert loss-of-signal */
|
|
write_command(nic, E1000_REG_CTRL, status);
|
|
|
|
/* Disables flow control */
|
|
write_command(nic, 0x0028, 0);
|
|
write_command(nic, 0x002c, 0);
|
|
write_command(nic, 0x0030, 0);
|
|
write_command(nic, 0x0170, 0);
|
|
|
|
/* Unset flow control */
|
|
status = read_command(nic, E1000_REG_CTRL);
|
|
status &= ~(1 << 30);
|
|
write_command(nic, E1000_REG_CTRL, status);
|
|
delay_yield(10000);
|
|
|
|
nic->net_queue = list_create("e1000 net queue", nic);
|
|
nic->rx_wait = list_create("e1000 rx sem", nic);
|
|
nic->alert_wait = list_create("e1000 select waiters", nic);
|
|
|
|
nic->irq_number = pci_get_interrupt(e1000_device_pci);
|
|
|
|
irq_install_handler(nic->irq_number, irq_handler, nic->eth.if_name);
|
|
|
|
for (int i = 0; i < 128; ++i) {
|
|
write_command(nic, 0x5200 + i * 4, 0);
|
|
}
|
|
|
|
for (int i = 0; i < 64; ++i) {
|
|
read_command(nic, 0x4000 + i * 4);
|
|
}
|
|
|
|
init_rx(nic);
|
|
init_tx(nic);
|
|
|
|
/* Twiddle interrupts */
|
|
write_command(nic, 0x00D0, 0xFFFFFFFF);
|
|
write_command(nic, 0x00D8, 0xFFFFFFFF);
|
|
write_command(nic, 0x00D0, INTS);
|
|
delay_yield(10000);
|
|
|
|
nic->link_status = (read_command(nic, E1000_REG_STATUS) & (1 << 1));
|
|
|
|
nic->eth.device_node = calloc(sizeof(fs_node_t),1);
|
|
snprintf(nic->eth.device_node->name, 100, "%s", nic->eth.if_name);
|
|
nic->eth.device_node->flags = FS_BLOCKDEVICE; /* NETDEVICE? */
|
|
nic->eth.device_node->mask = 0666; /* temporary; shouldn't be doing this with these device files */
|
|
nic->eth.device_node->ioctl = ioctl_e1000;
|
|
nic->eth.device_node->write = write_e1000;
|
|
nic->eth.device_node->selectcheck = check_e1000;
|
|
nic->eth.device_node->selectwait = wait_e1000;
|
|
nic->eth.device_node->device = nic;
|
|
|
|
nic->eth.mtu = 1500; /* guess */
|
|
|
|
net_add_interface(nic->eth.if_name, nic->eth.device_node);
|
|
|
|
char worker_name[34];
|
|
snprintf(worker_name, 33, "[%s]", nic->eth.if_name);
|
|
spawn_worker_thread(e1000_process, worker_name, nic);
|
|
}
|
|
|
|
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * found) {
|
|
if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea || deviceid == 0x10d3)) {
|
|
/* Allocate a device */
|
|
struct e1000_nic * nic = calloc(1,sizeof(struct e1000_nic));
|
|
nic->pci_device = device;
|
|
nic->deviceid = deviceid;
|
|
devices[device_count++] = nic;
|
|
|
|
snprintf(nic->eth.if_name, 31,
|
|
"enp%ds%d",
|
|
(int)pci_extract_bus(device),
|
|
(int)pci_extract_slot(device));
|
|
|
|
e1000_init(nic);
|
|
*(int*)found = 1;
|
|
}
|
|
}
|
|
|
|
static int e1000_install(int argc, char * argv[]) {
|
|
uint32_t found = 0;
|
|
pci_scan(&find_e1000, -1, &found);
|
|
|
|
if (!found) {
|
|
/* TODO: Clean up? Remove ourselves? */
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fini(void) {
|
|
/* TODO: Uninstall device */
|
|
return 0;
|
|
}
|
|
|
|
struct Module metadata = {
|
|
.name = "e1000",
|
|
.init = e1000_install,
|
|
.fini = fini,
|
|
};
|
|
|