toaruos/kernel/misc/debug_shell.c
2013-12-14 13:47:18 -08:00

569 lines
15 KiB
C

/*
* Kernel Debug Shell
*/
#include <system.h>
#include <fs.h>
#include <logging.h>
#include <process.h>
#include <version.h>
#include <termios.h>
#include <tokenize.h>
#include <hashmap.h>
#include <pci.h>
#include <debug_shell.h>
/*
* This is basically the same as a userspace buffered/unbuffered
* termio call. These are the same sorts of things I would use in
* a text editor in userspace, but with the internal kernel calls
* rather than system calls.
*/
static struct termios old;
void set_unbuffered(fs_node_t * dev) {
ioctl_fs(dev, TCGETS, &old);
struct termios new = old;
new.c_lflag &= (~ICANON & ~ECHO);
ioctl_fs(dev, TCSETSF, &new);
}
void set_buffered(fs_node_t * dev) {
ioctl_fs(dev, TCSETSF, &old);
}
/*
* TODO move this to the printf module
*/
void fs_printf(fs_node_t * device, char *fmt, ...) {
va_list args;
va_start(args, fmt);
char buffer[1024];
vasprintf(buffer, fmt, args);
va_end(args);
write_fs(device, 0, strlen(buffer), (uint8_t *)buffer);
}
/*
* Quick readline implementation.
*
* Most of these TODOs are things I've done already in older code:
* TODO tabcompletion would be nice
* TODO history is also nice
*/
int debug_shell_readline(fs_node_t * dev, char * linebuf, int max) {
int read = 0;
set_unbuffered(dev);
while (read < max) {
uint8_t buf[1];
int r = read_fs(dev, 0, 1, (unsigned char *)buf);
if (!r) {
debug_print(WARNING, "Read nothing?");
continue;
}
linebuf[read] = buf[0];
if (buf[0] == '\n') {
fs_printf(dev, "\n");
linebuf[read] = 0;
break;
} else if (buf[0] == 0x08) {
if (read > 0) {
fs_printf(dev, "\010 \010");
read--;
linebuf[read] = 0;
}
continue;
}
fs_printf(dev, "%c", buf[0]);
read += r;
}
set_buffered(dev);
return read;
}
/*
* Tasklet for running a userspace application.
*/
void debug_shell_run_sh(void * data, char * name) {
char * argv[] = {
"/bin/sh",
NULL
};
int argc = 0;
while (argv[argc]) {
argc++;
}
system(argv[0], argc, argv); /* Run shell */
task_exit(42);
}
/*
* We're going to have a list of shell commands.
* We'll search through it linearly because I don't
* care to write a hashmap right now. Maybe later.
*/
struct shell_command {
char * name;
int (*function) (fs_node_t * tty, int argc, char * argv[]);
char * description;
};
hashmap_t * shell_commands_map = NULL;
/*
* Shell commands
*/
static int shell_create_userspace_shell(fs_node_t * tty, int argc, char * argv[]) {
int pid = create_kernel_tasklet(debug_shell_run_sh, "[[k-sh]]", NULL);
fs_printf(tty, "Shell started with pid = %d\n", pid);
process_t * child_task = process_from_pid(pid);
sleep_on(child_task->wait_queue);
return child_task->status;
}
static int shell_echo(fs_node_t * tty, int argc, char * argv[]) {
for (int i = 1; i < argc; ++i) {
fs_printf(tty, "%s ", argv[i]);
}
fs_printf(tty, "\n");
return 0;
}
static int shell_help(fs_node_t * tty, int argc, char * argv[]) {
list_t * hash_keys = hashmap_keys(shell_commands_map);
foreach(_key, hash_keys) {
char * key = (char *)_key->value;
struct shell_command * c = hashmap_get(shell_commands_map, key);
fs_printf(tty, "%s - %s\n", c->name, c->description);
}
list_free(hash_keys);
free(hash_keys);
return 0;
}
static int shell_cd(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
return -1;
}
char * newdir = argv[1];
char * path = canonicalize_path(current_process->wd_name, newdir);
fs_node_t * chd = kopen(path, 0);
if (chd) {
if ((chd->flags & FS_DIRECTORY) == 0) {
return -1;
}
free(current_process->wd_name);
current_process->wd_name = malloc(strlen(path) + 1);
memcpy(current_process->wd_name, path, strlen(path) + 1);
return 0;
} else {
return -1;
}
}
static int shell_ls(fs_node_t * tty, int argc, char * argv[]) {
/* Okay, we're going to take the working directory... */
fs_node_t * wd = kopen(current_process->wd_name, 0);
uint32_t index = 0;
struct dirent * kentry = readdir_fs(wd, index);
while (kentry) {
fs_printf(tty, "%s\n", kentry->name);
index++;
kentry = readdir_fs(wd, index);
}
close_fs(wd);
free(wd);
return 0;
}
static int shell_test_hash(fs_node_t * tty, int argc, char * argv[]) {
fs_printf(tty, "Creating a hash...\n");
hashmap_t * map = hashmap_create(2);
hashmap_set(map, "a", (void *)1);
hashmap_set(map, "b", (void *)2);
hashmap_set(map, "c", (void *)3);
fs_printf(tty, "value at a: %d\n", (int)hashmap_get(map, "a"));
fs_printf(tty, "value at b: %d\n", (int)hashmap_get(map, "b"));
fs_printf(tty, "value at c: %d\n", (int)hashmap_get(map, "c"));
hashmap_set(map, "b", (void *)42);
fs_printf(tty, "value at a: %d\n", (int)hashmap_get(map, "a"));
fs_printf(tty, "value at b: %d\n", (int)hashmap_get(map, "b"));
fs_printf(tty, "value at c: %d\n", (int)hashmap_get(map, "c"));
hashmap_remove(map, "a");
fs_printf(tty, "value at a: %d\n", (int)hashmap_get(map, "a"));
fs_printf(tty, "value at b: %d\n", (int)hashmap_get(map, "b"));
fs_printf(tty, "value at c: %d\n", (int)hashmap_get(map, "c"));
fs_printf(tty, "map contains a: %s\n", hashmap_has(map, "a") ? "yes" : "no");
fs_printf(tty, "map contains b: %s\n", hashmap_has(map, "b") ? "yes" : "no");
fs_printf(tty, "map contains c: %s\n", hashmap_has(map, "c") ? "yes" : "no");
list_t * hash_keys = hashmap_keys(map);
foreach(_key, hash_keys) {
char * key = (char *)_key->value;
fs_printf(tty, "map[%s] = %d\n", key, (int)hashmap_get(map, key));
}
list_free(hash_keys);
free(hash_keys);
hashmap_free(map);
free(map);
return 0;
}
static int shell_log(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
fs_printf(tty, "Log level is currently %d.\n", debug_level);
fs_printf(tty, "Serial logging is %s.\n", kprint_to_serial ? "enabled" : "disabled");
fs_printf(tty, "Usage: log [on|off] [<level>]\n");
} else {
if (!strcmp(argv[1], "on")) {
kprint_to_serial = 1;
if (argc > 2) {
debug_level = atoi(argv[2]);
}
} else if (!strcmp(argv[1], "off")) {
kprint_to_serial = 0;
}
}
return 0;
}
static void dumb_sort(char * str) {
int size = strlen(str);
for (int i = 0; i < size-1; ++i) {
for (int j = 0; j < size-1; ++j) {
if (str[j] > str[j+1]) {
char t = str[j+1];
str[j+1] = str[j];
str[j] = t;
}
}
}
}
static int shell_anagrams(fs_node_t * tty, int argc, char * argv[]) {
hashmap_t * map = hashmap_create(10);
for (int i = 1; i < argc; ++i) {
char * c = strdup(argv[i]);
dumb_sort(c);
list_t * l = hashmap_get(map, c);
if (!l) {
l = list_create();
hashmap_set(map, c, l);
}
list_insert(l, argv[i]);
free(c);
}
list_t * values = hashmap_values(map);
foreach(val, values) {
list_t * x = (list_t *)val->value;
fs_printf(tty, "{");
foreach(node, x) {
fs_printf(tty, "%s", (char *)node->value);
if (node->next) {
fs_printf(tty, ", ");
}
}
fs_printf(tty, "}%s", (!!val->next) ? ", " : "\n");
free(x);
}
list_free(values);
free(values);
hashmap_free(map);
free(map);
return 0;
}
unsigned short pciConfigReadWord (unsigned short bus, unsigned short slot,
unsigned short func, unsigned short offset)
{
unsigned long address;
unsigned long lbus = (unsigned long)bus;
unsigned long lslot = (unsigned long)slot;
unsigned long lfunc = (unsigned long)func;
unsigned short tmp = 0;
/* create configuration address as per Figure 1 */
address = (unsigned long)((lbus << 16) | (lslot << 11) |
(lfunc << 8) | (offset & 0xfc) | ((uint32_t)0x80000000));
/* write out the address */
outportl(0xCF8, address);
/* read in the data */
/* (offset & 2) * 8) = 0 will choose the fisrt word of the 32 bits register */
tmp = (unsigned short)((inportl(0xCFC) >> ((offset & 2) * 8)) & 0xffff);
return (tmp);
}
static void scan_hit_list(uint32_t device, uint16_t vendorid, uint16_t deviceid) {
fs_node_t * tty = current_process->fds->entries[0];
fs_printf(tty, "%x:%x.%x (%x, %x:%x) %s %s\n",
(int)pci_extract_bus(device),
(int)pci_extract_slot(device),
(int)pci_extract_func(device),
(int)pci_find_type(device),
vendorid,
deviceid,
pci_vendor_lookup(vendorid),
pci_device_lookup(vendorid,deviceid));
fs_printf(tty, " BAR0: 0x%x\n", pci_read_field(device, PCI_BAR0, 4));
fs_printf(tty, " BAR1: 0x%x\n", pci_read_field(device, PCI_BAR1, 4));
fs_printf(tty, " BAR2: 0x%x\n", pci_read_field(device, PCI_BAR2, 4));
fs_printf(tty, " BAR3: 0x%x\n", pci_read_field(device, PCI_BAR3, 4));
fs_printf(tty, " BAR4: 0x%x\n", pci_read_field(device, PCI_BAR4, 4));
fs_printf(tty, " BAR6: 0x%x\n", pci_read_field(device, PCI_BAR5, 4));
}
static int shell_pci(fs_node_t * tty, int argc, char * argv[]) {
pci_scan(&scan_hit_list, -1);
return 0;
}
static int shell_uid(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
fs_printf(tty, "uid=%d\n", current_process->user);
} else {
current_process->user = atoi(argv[1]);
}
return 0;
}
static struct shell_command shell_commands[] = {
{"shell", &shell_create_userspace_shell,
"Runs a userspace shell on this tty."},
{"echo", &shell_echo,
"Prints arguments."},
{"help", &shell_help,
"Prints a list of possible shell commands and their descriptions."},
{"cd", &shell_cd,
"Change current directory."},
{"ls", &shell_ls,
"List files in current or other directory."},
{"test-hash", &shell_test_hash,
"Test hashmap functionality."},
{"log", &shell_log,
"Configure serial debug logging."},
{"anagrams", &shell_anagrams,
"Demo of hashmaps and lists. Give a list of words, get a grouping of anagrams."},
{"pci", &shell_pci,
"Print PCI devices, as well as their names and BARs."},
{"uid", &shell_uid,
"Change the effective user id of the shell (useful when running `shell`)."},
{NULL, NULL, NULL}
};
/*
* A TTY object to pass to the tasklets for handling
* serial-tty interaction. This probably shouldn't
* be done as tasklets - TTYs should just be able
* to wrap existing fs_nodes themselves, but that's
* a problem for another day.
*/
struct tty_o {
fs_node_t * node;
fs_node_t * tty;
};
/*
* These tasklets handle tty-serial interaction.
*/
void debug_shell_handle_in(void * data, char * name) {
struct tty_o * tty = (struct tty_o *)data;
while (1) {
uint8_t buf[1];
int r = read_fs(tty->tty, 0, 1, (unsigned char *)buf);
write_fs(tty->node, 0, r, buf);
}
}
void debug_shell_handle_out(void * data, char * name) {
struct tty_o * tty = (struct tty_o *)data;
while (1) {
uint8_t buf[1];
int r = read_fs(tty->node, 0, 1, (unsigned char *)buf);
write_fs(tty->tty, 0, r, buf);
}
}
/*
* Determine the size of a smart terminal that we don't have direct
* termios access to. This is done by sending a cursor-move command
* that will put the cursor into the lower right corner and then
* requesting the cursor position report. We then read and parse
* the position report. In the case where the terminal on the other
* end is actually dumb, we end up waiting for some input and
* then timing out.
* TODO with asyncio support, the timeout should actually work.
* consider also using an alarm (which I also don't have)
*/
void divine_size(fs_node_t * dev, int * width, int * height) {
char tmp[100];
int read = 0;
unsigned long start_tick = timer_ticks;
/* Move cursor, Request position, Reset cursor */
fs_printf(dev, "\033[1000;1000H\033[6n\033[H");
while (1) {
char buf[1];
int r = read_fs(dev, 0, 1, (unsigned char *)buf);
if (r > 0) {
if (buf[0] != 'R') {
if (read > 1) {
tmp[read-2] = buf[0];
}
read++;
} else {
break;
}
}
if (timer_ticks - start_tick >= 2) {
/*
* We've timed out. This will only be triggered
* when we eventually receive something, though
*/
*width = 80;
*height = 23;
/* Clear and return */
fs_printf(dev, "\033[J");
return;
}
}
/* Clear */
fs_printf(dev, "\033[J");
/* Break up the result into two strings */
for (unsigned int i = 0; i < strlen(tmp); i++) {
if (tmp[i] == ';') {
tmp[i] = '\0';
break;
}
}
char * h = (char *)((uintptr_t)tmp + strlen(tmp)+1);
/* And then parse it into numbers */
*height = atoi(tmp);
*width = atoi(h);
}
/*
* Tasklet for managing the kernel serial console.
* This is basically a very simple shell, with access
* to some internal kernel commands, and (eventually)
* debugging routines.
*/
void debug_shell_run(void * data, char * name) {
/*
* We will run on the first serial port.
* TODO detect that this failed
*/
fs_node_t * tty = kopen("/dev/ttyS0", 0);
/* Our prompt will include the version number of the current kernel */
char version_number[1024];
sprintf(version_number, __kernel_version_format,
__kernel_version_major,
__kernel_version_minor,
__kernel_version_lower,
__kernel_version_suffix);
/* We will convert the serial interface into an actual TTY */
int master, slave;
struct winsize size = {0,0,0,0};
/* Attempt to divine the terminal size. Changing the window size after this will do bad things */
int width, height;
divine_size(tty, &width, &height);
size.ws_row = height;
size.ws_col = width;
/* Convert the serial line into a TTY */
openpty(&master, &slave, NULL, NULL, &size);
/* Attach the serial to the TTY interface */
struct tty_o _tty = {.node = current_process->fds->entries[master], .tty = tty};
create_kernel_tasklet(debug_shell_handle_in, "[kttydebug-in]", (void *)&_tty);
create_kernel_tasklet(debug_shell_handle_out, "[kttydebug-out]", (void *)&_tty);
/* Set the device to be the actual TTY slave */
tty = current_process->fds->entries[slave];
current_process->fds->entries[0] = tty;
current_process->fds->entries[1] = tty;
current_process->fds->entries[2] = tty;
/* Initialize the shell commands map */
if (!shell_commands_map) {
shell_commands_map = hashmap_create(10);
struct shell_command * sh = &shell_commands[0];
while (sh->name) {
hashmap_set(shell_commands_map, sh->name, sh);
sh++;
}
}
int retval = 0;
while (1) {
char command[512];
/* Print out the prompt */
if (retval) {
fs_printf(tty, "%s-%s %d %s# ", __kernel_name, version_number, retval, current_process->wd_name);
} else {
fs_printf(tty, "%s-%s %s# ", __kernel_name, version_number, current_process->wd_name);
}
/* Read a line */
debug_shell_readline(tty, command, 511);
char * arg = strdup(command);
char * argv[1024]; /* Command tokens (space-separated elements) */
int argc = tokenize(arg, " ", argv);
if (!argc) continue;
/* Parse the command string */
struct shell_command * sh = hashmap_get(shell_commands_map, argv[0]);
if (sh) {
retval = sh->function(tty, argc, argv);
} else {
fs_printf(tty, "Unrecognized command: %s\n", argv[0]);
}
free(arg);
}
}
int debug_shell_start(void) {
int i = create_kernel_tasklet(debug_shell_run, "[kttydebug]", NULL);
debug_print(NOTICE, "Started tasklet with pid=%d", i);
return 0;
}