toaruos/kernel/misc/debug_shell.c
Kevin Lange 56ad9598d0 New kernel args parser
I know, this is a lot slower than the old one, but it's a transition to
a new-new args parser that will use a hashmap... as soon as I get around
to writing a hashmap implementation.
2013-12-01 19:37:22 -08:00

374 lines
9.2 KiB
C

/*
* Kernel Debug Shell
*/
#include <system.h>
#include <fs.h>
#include <logging.h>
#include <process.h>
#include <version.h>
#include <termios.h>
#include <debug_shell.h>
/*
* This is basically the same as a userspace buffered/unbuffered
* termio call. These are the same sorts of things I would use in
* a text editor in userspace, but with the internal kernel calls
* rather than system calls.
*/
static struct termios old;
void set_unbuffered(fs_node_t * dev) {
ioctl_fs(dev, TCGETS, &old);
struct termios new = old;
new.c_lflag &= (~ICANON & ~ECHO);
ioctl_fs(dev, TCSETSF, &new);
}
void set_buffered(fs_node_t * dev) {
ioctl_fs(dev, TCSETSF, &old);
}
/*
* TODO move this to the printf module
*/
void fs_printf(fs_node_t * device, char *fmt, ...) {
va_list args;
va_start(args, fmt);
char buffer[1024];
vasprintf(buffer, fmt, args);
va_end(args);
write_fs(device, 0, strlen(buffer), (uint8_t *)buffer);
}
/*
* Quick readline implementation.
*
* Most of these TODOs are things I've done already in older code:
* TODO tabcompletion would be nice
* TODO history is also nice
*/
int debug_shell_readline(fs_node_t * dev, char * linebuf, int max) {
int read = 0;
set_unbuffered(dev);
while (read < max) {
uint8_t buf[1];
int r = read_fs(dev, 0, 1, (unsigned char *)buf);
if (!r) {
debug_print(WARNING, "Read nothing?");
continue;
}
linebuf[read] = buf[0];
if (buf[0] == '\n') {
fs_printf(dev, "\n");
linebuf[read] = 0;
break;
} else if (buf[0] == 0x08) {
if (read > 0) {
fs_printf(dev, "\010 \010");
read--;
linebuf[read] = 0;
}
continue;
}
fs_printf(dev, "%c", buf[0]);
read += r;
}
set_buffered(dev);
return read;
}
/*
* Tasklet for running a userspace application.
*/
void debug_shell_run_sh(void * data, char * name) {
fs_node_t * tty = (fs_node_t *)data;
current_process->fds->entries[0] = tty;
current_process->fds->entries[1] = tty;
current_process->fds->entries[2] = tty;
char * argv[] = {
"/bin/sh",
NULL
};
int argc = 0;
while (argv[argc]) {
argc++;
}
system(argv[0], argc, argv); /* Run shell */
task_exit(42);
}
/*
* We're going to have a list of shell commands.
* We'll search through it linearly because I don't
* care to write a hashmap right now. Maybe later.
*/
struct shell_command {
char * name;
int (*function) (fs_node_t * tty, int argc, char * argv[]);
char * description;
};
#define NUM_COMMANDS 6
static struct shell_command shell_commands[NUM_COMMANDS];
/*
* Shell commands
*/
static int shell_create_userspace_shell(fs_node_t * tty, int argc, char * argv[]) {
int pid = create_kernel_tasklet(debug_shell_run_sh, "[[k-sh]]", tty);
fs_printf(tty, "Shell started with pid = %d\n", pid);
process_t * child_task = process_from_pid(pid);
sleep_on(child_task->wait_queue);
return child_task->status;
}
static int shell_echo(fs_node_t * tty, int argc, char * argv[]) {
for (int i = 1; i < argc; ++i) {
fs_printf(tty, "%s ", argv[i]);
}
fs_printf(tty, "\n");
return 0;
}
static int shell_help(fs_node_t * tty, int argc, char * argv[]) {
struct shell_command * sh = &shell_commands[0];
while (sh->name) {
fs_printf(tty, "%s - %s\n", sh->name, sh->description);
sh++;
}
return 0;
}
static int shell_cd(fs_node_t * tty, int argc, char * argv[]) {
if (argc < 2) {
return -1;
}
char * newdir = argv[1];
char * path = canonicalize_path(current_process->wd_name, newdir);
fs_node_t * chd = kopen(path, 0);
if (chd) {
if ((chd->flags & FS_DIRECTORY) == 0) {
return -1;
}
free(current_process->wd_name);
current_process->wd_name = malloc(strlen(path) + 1);
memcpy(current_process->wd_name, path, strlen(path) + 1);
return 0;
} else {
return -1;
}
}
static int shell_ls(fs_node_t * tty, int argc, char * argv[]) {
/* Okay, we're going to take the working directory... */
fs_node_t * wd = kopen(current_process->wd_name, 0);
uint32_t index = 0;
struct dirent * kentry = readdir_fs(wd, index);
while (kentry) {
fs_printf(tty, "%s\n", kentry->name);
index++;
kentry = readdir_fs(wd, index);
}
close_fs(wd);
free(wd);
return 0;
}
static struct shell_command shell_commands[NUM_COMMANDS] = {
{"shell", &shell_create_userspace_shell,
"Runs a userspace shell on this tty."},
{"echo", &shell_echo,
"Prints arguments."},
{"help", &shell_help,
"Prints a list of possible shell commands and their descriptions."},
{"cd", &shell_cd,
"Change current directory."},
{"ls", &shell_ls,
"List files in current or other directory."},
{NULL, NULL, NULL}
};
/*
* A TTY object to pass to the tasklets for handling
* serial-tty interaction. This probably shouldn't
* be done as tasklets - TTYs should just be able
* to wrap existing fs_nodes themselves, but that's
* a problem for another day.
*/
struct tty_o {
fs_node_t * node;
fs_node_t * tty;
};
/*
* These tasklets handle tty-serial interaction.
*/
void debug_shell_handle_in(void * data, char * name) {
struct tty_o * tty = (struct tty_o *)data;
while (1) {
uint8_t buf[1];
int r = read_fs(tty->tty, 0, 1, (unsigned char *)buf);
write_fs(tty->node, 0, r, buf);
}
}
void debug_shell_handle_out(void * data, char * name) {
struct tty_o * tty = (struct tty_o *)data;
while (1) {
uint8_t buf[1];
int r = read_fs(tty->node, 0, 1, (unsigned char *)buf);
write_fs(tty->tty, 0, r, buf);
}
}
/*
* Determine the size of a smart terminal that we don't have direct
* termios access to. This is done by sending a cursor-move command
* that will put the cursor into the lower right corner and then
* requesting the cursor position report. We then read and parse
* the position report. In the case where the terminal on the other
* end is actually dumb, we end up waiting for some input and
* then timing out.
* TODO with asyncio support, the timeout should actually work.
* consider also using an alarm (which I also don't have)
*/
void divine_size(fs_node_t * dev, int * width, int * height) {
char tmp[100];
int read = 0;
unsigned long start_tick = timer_ticks;
/* Move cursor, Request position, Reset cursor */
fs_printf(dev, "\033[1000;1000H\033[6n\033[H");
while (1) {
char buf[1];
int r = read_fs(dev, 0, 1, (unsigned char *)buf);
if (r > 0) {
if (buf[0] != 'R') {
if (read > 1) {
tmp[read-2] = buf[0];
}
read++;
} else {
break;
}
}
if (timer_ticks - start_tick >= 2) {
/*
* We've timed out. This will only be triggered
* when we eventually receive something, though
*/
*width = 80;
*height = 23;
/* Clear and return */
fs_printf(dev, "\033[J");
return;
}
}
/* Clear */
fs_printf(dev, "\033[J");
/* Break up the result into two strings */
for (unsigned int i = 0; i < strlen(tmp); i++) {
if (tmp[i] == ';') {
tmp[i] = '\0';
break;
}
}
char * h = (char *)((uintptr_t)tmp + strlen(tmp)+1);
/* And then parse it into numbers */
*height = atoi(tmp);
*width = atoi(h);
}
/*
* Tasklet for managing the kernel serial console.
* This is basically a very simple shell, with access
* to some internal kernel commands, and (eventually)
* debugging routines.
*/
void debug_shell_run(void * data, char * name) {
/*
* We will run on the first serial port.
* TODO detect that this failed
*/
fs_node_t * tty = kopen("/dev/ttyS0", 0);
/* Our prompt will include the version number of the current kernel */
char version_number[1024];
sprintf(version_number, __kernel_version_format,
__kernel_version_major,
__kernel_version_minor,
__kernel_version_lower,
__kernel_version_suffix);
/* We will convert the serial interface into an actual TTY */
int master, slave;
struct winsize size = {0,0,0,0};
/* Attempt to divine the terminal size. Changing the window size after this will do bad things */
int width, height;
divine_size(tty, &width, &height);
size.ws_row = height;
size.ws_col = width;
/* Convert the serial line into a TTY */
openpty(&master, &slave, NULL, NULL, &size);
/* Attach the serial to the TTY interface */
struct tty_o _tty = {.node = current_process->fds->entries[master], .tty = tty};
create_kernel_tasklet(debug_shell_handle_in, "[kttydebug-in]", (void *)&_tty);
create_kernel_tasklet(debug_shell_handle_out, "[kttydebug-out]", (void *)&_tty);
/* Set the device to be the actual TTY slave */
tty = current_process->fds->entries[slave];
int retval = 0;
while (1) {
char command[512];
/* Print out the prompt */
if (retval) {
fs_printf(tty, "%s-%s %d %s# ", __kernel_name, version_number, retval, current_process->wd_name);
} else {
fs_printf(tty, "%s-%s %s# ", __kernel_name, version_number, current_process->wd_name);
}
/* Read a line */
debug_shell_readline(tty, command, 511);
char * arg = strdup(command);
char * argv[1024]; /* Command tokens (space-separated elements) */
int argc = tokenize(arg, " ", argv);
/* Parse the command string */
struct shell_command * sh = &shell_commands[0];
while (sh->name) {
if (!strcmp(sh->name, argv[0])) {
retval = sh->function(tty, argc, argv);
break;
}
sh++;
}
if (sh->name == NULL) {
fs_printf(tty, "Unrecognized command: %s\n", argv[0]);
}
free(arg);
}
}
int debug_shell_start(void) {
int i = create_kernel_tasklet(debug_shell_run, "[kttydebug]", NULL);
debug_print(NOTICE, "Started tasklet with pid=%d", i);
return 0;
}