553 lines
15 KiB
C
553 lines
15 KiB
C
/**
|
|
* @file kernel/net/e1000.c
|
|
* @brief Intel Gigabit Ethernet device driver
|
|
*
|
|
* @copyright
|
|
* This file is part of ToaruOS and is released under the terms
|
|
* of the NCSA / University of Illinois License - see LICENSE.md
|
|
* Copyright (C) 2017-2021 K. Lange
|
|
*
|
|
* @ref https://www.intel.com/content/dam/www/public/us/en/documents/manuals/pcie-gbe-controllers-open-source-manual.pdf
|
|
*/
|
|
#include <kernel/types.h>
|
|
#include <kernel/string.h>
|
|
#include <kernel/printf.h>
|
|
#include <kernel/process.h>
|
|
#include <kernel/pci.h>
|
|
#include <kernel/mmu.h>
|
|
#include <kernel/pipe.h>
|
|
#include <kernel/list.h>
|
|
#include <kernel/spinlock.h>
|
|
#include <kernel/time.h>
|
|
#include <kernel/vfs.h>
|
|
#include <kernel/mod/net.h>
|
|
#include <kernel/net/netif.h>
|
|
#include <kernel/net/eth.h>
|
|
#include <kernel/module.h>
|
|
#include <errno.h>
|
|
|
|
#include <kernel/arch/x86_64/irq.h>
|
|
#include <kernel/net/e1000.h>
|
|
|
|
#include <sys/socket.h>
|
|
#include <net/if.h>
|
|
|
|
#define INTS (ICR_LSC | ICR_RXO | ICR_RXT0 | ICR_TXQE | ICR_TXDW | ICR_ACK | ICR_RXDMT0 | ICR_SRPD)
|
|
|
|
struct e1000_nic {
|
|
struct EthernetDevice eth;
|
|
uint32_t pci_device;
|
|
uint16_t deviceid;
|
|
uintptr_t mmio_addr;
|
|
int irq_number;
|
|
|
|
int has_eeprom;
|
|
int rx_index;
|
|
int tx_index;
|
|
int link_status;
|
|
|
|
spin_lock_t tx_lock;
|
|
|
|
uint8_t * rx_virt[E1000_NUM_RX_DESC];
|
|
uint8_t * tx_virt[E1000_NUM_TX_DESC];
|
|
struct e1000_rx_desc * rx;
|
|
struct e1000_tx_desc * tx;
|
|
uintptr_t rx_phys;
|
|
uintptr_t tx_phys;
|
|
|
|
int configured;
|
|
process_t * queuer;
|
|
process_t * processor;
|
|
|
|
netif_counters_t counts;
|
|
};
|
|
|
|
static int device_count = 0;
|
|
static struct e1000_nic * devices[32] = {NULL};
|
|
|
|
static uint32_t mmio_read32(uintptr_t addr) {
|
|
return *((volatile uint32_t*)(addr));
|
|
}
|
|
static void mmio_write32(uintptr_t addr, uint32_t val) {
|
|
(*((volatile uint32_t*)(addr))) = val;
|
|
}
|
|
|
|
static void write_command(struct e1000_nic * device, uint16_t addr, uint32_t val) {
|
|
mmio_write32(device->mmio_addr + addr, val);
|
|
}
|
|
|
|
static uint32_t read_command(struct e1000_nic * device, uint16_t addr) {
|
|
return mmio_read32(device->mmio_addr + addr);
|
|
}
|
|
|
|
static void delay_yield(size_t subticks) {
|
|
unsigned long s, ss;
|
|
relative_time(0, subticks, &s, &ss);
|
|
sleep_until((process_t *)this_core->current_process, s, ss);
|
|
switch_task(0);
|
|
}
|
|
|
|
static int eeprom_detect(struct e1000_nic * device) {
|
|
|
|
/* Definitely not */
|
|
if (device->deviceid == 0x10d3) return 0;
|
|
|
|
write_command(device, E1000_REG_EEPROM, 1);
|
|
|
|
for (int i = 0; i < 10000 && !device->has_eeprom; ++i) {
|
|
uint32_t val = read_command(device, E1000_REG_EEPROM);
|
|
if (val & 0x10) device->has_eeprom = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t eeprom_read(struct e1000_nic * device, uint8_t addr) {
|
|
uint32_t temp = 0;
|
|
write_command(device, E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
|
|
while (!((temp = read_command(device, E1000_REG_EEPROM)) & (1 << 4)));
|
|
return (uint16_t)((temp >> 16) & 0xFFFF);
|
|
}
|
|
|
|
static void write_mac(struct e1000_nic * device) {
|
|
uint32_t low, high;
|
|
memcpy(&low, &device->eth.mac[0], 4);
|
|
memcpy(&high,&device->eth.mac[4], 2);
|
|
memset((uint8_t *)&high + 2, 0, 2);
|
|
high |= 0x80000000;
|
|
write_command(device, E1000_REG_RXADDR + 0, low);
|
|
write_command(device, E1000_REG_RXADDR + 4, high);
|
|
}
|
|
|
|
static void read_mac(struct e1000_nic * device) {
|
|
if (device->has_eeprom) {
|
|
uint32_t t;
|
|
t = eeprom_read(device, 0);
|
|
device->eth.mac[0] = t & 0xFF;
|
|
device->eth.mac[1] = t >> 8;
|
|
t = eeprom_read(device, 1);
|
|
device->eth.mac[2] = t & 0xFF;
|
|
device->eth.mac[3] = t >> 8;
|
|
t = eeprom_read(device, 2);
|
|
device->eth.mac[4] = t & 0xFF;
|
|
device->eth.mac[5] = t >> 8;
|
|
} else {
|
|
uint32_t mac_addr_low = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR);
|
|
uint32_t mac_addr_high = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR + 4);
|
|
device->eth.mac[0] = (mac_addr_low >> 0 ) & 0xFF;
|
|
device->eth.mac[1] = (mac_addr_low >> 8 ) & 0xFF;
|
|
device->eth.mac[2] = (mac_addr_low >> 16) & 0xFF;
|
|
device->eth.mac[3] = (mac_addr_low >> 24) & 0xFF;
|
|
device->eth.mac[4] = (mac_addr_high>> 0 ) & 0xFF;
|
|
device->eth.mac[5] = (mac_addr_high>> 8 ) & 0xFF;
|
|
}
|
|
}
|
|
|
|
static void e1000_handle(struct e1000_nic * nic, uint32_t status) {
|
|
write_command(nic, E1000_REG_ICR, status);
|
|
|
|
if (!nic->configured) {
|
|
return;
|
|
}
|
|
|
|
if (status & ICR_LSC) {
|
|
nic->link_status= (read_command(nic, E1000_REG_STATUS) & (1 << 1));
|
|
}
|
|
|
|
make_process_ready(nic->queuer);
|
|
}
|
|
|
|
static void e1000_queuer(void * data) {
|
|
struct e1000_nic * nic = data;
|
|
|
|
int head = read_command(nic, E1000_REG_RXDESCHEAD);
|
|
int budget = 8;
|
|
|
|
while (1) {
|
|
int processed = 0;
|
|
if (head == nic->rx_index) {
|
|
head = read_command(nic, E1000_REG_RXDESCHEAD);
|
|
}
|
|
if (head != nic->rx_index) {
|
|
while ((nic->rx[nic->rx_index].status & 0x01) && (processed < budget)) {
|
|
int i = nic->rx_index;
|
|
if (!(nic->rx[i].errors & (0x97))) {
|
|
nic->counts.rx_count++;
|
|
nic->counts.rx_bytes += nic->rx[i].length;
|
|
net_eth_handle((void*)nic->rx_virt[i], nic->eth.device_node, nic->rx[i].length);
|
|
} else {
|
|
printf("error bits set in packet: %x\n", nic->rx[i].errors);
|
|
}
|
|
processed++;
|
|
nic->rx[i].status = 0;
|
|
if (++nic->rx_index == E1000_NUM_RX_DESC) {
|
|
nic->rx_index = 0;
|
|
}
|
|
if (nic->rx_index == head) {
|
|
head = read_command(nic, E1000_REG_RXDESCHEAD);
|
|
if (nic->rx_index == head) break;
|
|
}
|
|
write_command(nic, E1000_REG_RXDESCTAIL, nic->rx_index);
|
|
read_command(nic, E1000_REG_STATUS);
|
|
}
|
|
}
|
|
if (processed == 0) {
|
|
switch_task(0);
|
|
} else {
|
|
if (this_core->cpu_id == 0) switch_task(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int irq_handler(struct regs *r) {
|
|
int irq = r->int_no - 32;
|
|
int handled = 0;
|
|
|
|
for (int i = 0; i < device_count; ++i) {
|
|
if (devices[i]->irq_number == irq) {
|
|
uint32_t status = read_command(devices[i], E1000_REG_ICR);
|
|
if (status) {
|
|
e1000_handle(devices[i], status);
|
|
if (!handled) {
|
|
handled = 1;
|
|
irq_ack(irq);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
static int tx_full(struct e1000_nic * device, int tx_tail, int tx_head) {
|
|
if (tx_tail == tx_head) return 0;
|
|
if (device->tx_index == tx_head) return 1;
|
|
if (((device->tx_index + 1) & E1000_NUM_TX_DESC) == tx_head) return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void send_packet(struct e1000_nic * device, uint8_t* payload, size_t payload_size) {
|
|
spin_lock(device->tx_lock);
|
|
int tx_tail = read_command(device, E1000_REG_TXDESCTAIL);
|
|
int tx_head = read_command(device, E1000_REG_TXDESCHEAD);
|
|
|
|
if (tx_full(device, tx_tail, tx_head)) {
|
|
int timeout = 1000;
|
|
do {
|
|
spin_unlock(device->tx_lock);
|
|
delay_yield(10000);
|
|
timeout--;
|
|
if (timeout == 0) {
|
|
printf("e1000: wait for tx timed out, giving up\n");
|
|
return;
|
|
}
|
|
spin_lock(device->tx_lock);
|
|
tx_tail = read_command(device, E1000_REG_TXDESCTAIL);
|
|
tx_head = read_command(device, E1000_REG_TXDESCHEAD);
|
|
} while (tx_full(device, tx_tail, tx_head));
|
|
}
|
|
|
|
memcpy(device->tx_virt[device->tx_index], payload, payload_size);
|
|
device->tx[device->tx_index].length = payload_size;
|
|
device->tx[device->tx_index].cmd = CMD_EOP | CMD_IFCS | CMD_RS; //| CMD_RPS;
|
|
device->tx[device->tx_index].status = 0;
|
|
|
|
device->counts.tx_count++;
|
|
device->counts.tx_bytes += payload_size;
|
|
|
|
if (++device->tx_index == E1000_NUM_TX_DESC) {
|
|
device->tx_index = 0;
|
|
}
|
|
write_command(device, E1000_REG_TXDESCTAIL, device->tx_index);
|
|
read_command(device, E1000_REG_STATUS);
|
|
|
|
spin_unlock(device->tx_lock);
|
|
}
|
|
|
|
static void init_rx(struct e1000_nic * device) {
|
|
write_command(device, E1000_REG_RXDESCLO, device->rx_phys);
|
|
write_command(device, E1000_REG_RXDESCHI, 0);
|
|
write_command(device, E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct e1000_rx_desc));
|
|
write_command(device, E1000_REG_RXDESCHEAD, 0);
|
|
write_command(device, E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
|
|
|
|
device->rx_index = 0;
|
|
|
|
write_command(device, E1000_REG_RCTRL,
|
|
RCTL_EN |
|
|
(1 << 2) | /* store bad packets */
|
|
(1 << 4) | /* multicast promiscuous */
|
|
(1 << 15) | /* broadcast accept */
|
|
(1 << 25) | /* Extended size... */
|
|
(3 << 16) | /* 4096 */
|
|
(1 << 26) /* strip CRC */
|
|
);
|
|
}
|
|
|
|
static void init_tx(struct e1000_nic * device) {
|
|
write_command(device, E1000_REG_TXDESCLO, device->tx_phys);
|
|
write_command(device, E1000_REG_TXDESCHI, 0);
|
|
write_command(device, E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct e1000_tx_desc));
|
|
write_command(device, E1000_REG_TXDESCHEAD, 0);
|
|
write_command(device, E1000_REG_TXDESCTAIL, 0);
|
|
|
|
device->tx_index = 0;
|
|
|
|
uint32_t tctl = read_command(device, E1000_REG_TCTRL);
|
|
|
|
/* Collision threshold */
|
|
tctl &= ~(0xFF << 4);
|
|
tctl |= (15 << 4);
|
|
|
|
/* Turn it on */
|
|
tctl |= TCTL_EN;
|
|
tctl |= TCTL_PSP;
|
|
tctl |= (1 << 24); /* retransmit on late collision */
|
|
|
|
write_command(device, E1000_REG_TCTRL, tctl);
|
|
}
|
|
|
|
static int ioctl_e1000(fs_node_t * node, unsigned long request, void * argp) {
|
|
struct e1000_nic * nic = node->device;
|
|
|
|
switch (request) {
|
|
case SIOCGIFHWADDR:
|
|
/* fill argp with mac */
|
|
memcpy(argp, nic->eth.mac, 6);
|
|
return 0;
|
|
|
|
case SIOCGIFADDR:
|
|
if (nic->eth.ipv4_addr == 0) return -ENOENT;
|
|
memcpy(argp, &nic->eth.ipv4_addr, sizeof(nic->eth.ipv4_addr));
|
|
return 0;
|
|
case SIOCSIFADDR:
|
|
memcpy(&nic->eth.ipv4_addr, argp, sizeof(nic->eth.ipv4_addr));
|
|
return 0;
|
|
case SIOCGIFNETMASK:
|
|
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
|
|
memcpy(argp, &nic->eth.ipv4_subnet, sizeof(nic->eth.ipv4_subnet));
|
|
return 0;
|
|
case SIOCSIFNETMASK:
|
|
memcpy(&nic->eth.ipv4_subnet, argp, sizeof(nic->eth.ipv4_subnet));
|
|
return 0;
|
|
case SIOCGIFGATEWAY:
|
|
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
|
|
memcpy(argp, &nic->eth.ipv4_gateway, sizeof(nic->eth.ipv4_gateway));
|
|
return 0;
|
|
case SIOCSIFGATEWAY:
|
|
memcpy(&nic->eth.ipv4_gateway, argp, sizeof(nic->eth.ipv4_gateway));
|
|
net_arp_ask(nic->eth.ipv4_gateway, node);
|
|
return 0;
|
|
|
|
case SIOCGIFADDR6:
|
|
return -ENOENT;
|
|
case SIOCSIFADDR6:
|
|
memcpy(&nic->eth.ipv6_addr, argp, sizeof(nic->eth.ipv6_addr));
|
|
return 0;
|
|
|
|
case SIOCGIFFLAGS: {
|
|
uint32_t * flags = argp;
|
|
*flags = IFF_RUNNING;
|
|
if (nic->link_status) *flags |= IFF_UP;
|
|
/* We turn these on in our init_tx */
|
|
*flags |= IFF_BROADCAST;
|
|
*flags |= IFF_MULTICAST;
|
|
return 0;
|
|
}
|
|
|
|
case SIOCGIFMTU: {
|
|
uint32_t * mtu = argp;
|
|
*mtu = nic->eth.mtu;
|
|
return 0;
|
|
}
|
|
|
|
case SIOCGIFCOUNTS: {
|
|
memcpy(argp, &nic->counts, sizeof(netif_counters_t));
|
|
return 0;
|
|
}
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static ssize_t write_e1000(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) {
|
|
struct e1000_nic * nic = node->device;
|
|
/* write packet */
|
|
send_packet(nic, buffer, size);
|
|
return size;
|
|
}
|
|
|
|
static void ints_off(struct e1000_nic * nic) {
|
|
write_command(nic, E1000_REG_IMC, 0xFFFFFFFF);
|
|
write_command(nic, E1000_REG_ICR, 0xFFFFFFFF);
|
|
read_command(nic, E1000_REG_STATUS);
|
|
}
|
|
|
|
static void e1000_init(struct e1000_nic * nic) {
|
|
uint32_t e1000_device_pci = nic->pci_device;
|
|
|
|
nic->rx_phys = mmu_allocate_n_frames(2) << 12;
|
|
nic->rx = mmu_map_mmio_region(nic->rx_phys, 8192);
|
|
|
|
nic->tx_phys = mmu_allocate_n_frames(2) << 12;
|
|
nic->tx = mmu_map_mmio_region(nic->tx_phys, 8192);
|
|
|
|
memset(nic->rx, 0, sizeof(struct e1000_rx_desc) * E1000_NUM_RX_DESC);
|
|
memset(nic->tx, 0, sizeof(struct e1000_tx_desc) * E1000_NUM_TX_DESC);
|
|
|
|
/* Allocate buffers */
|
|
for (int i = 0; i < E1000_NUM_RX_DESC; ++i) {
|
|
nic->rx[i].addr = mmu_allocate_a_frame() << 12;
|
|
nic->rx_virt[i] = mmu_map_mmio_region(nic->rx[i].addr, 4096);
|
|
mmu_frame_map_address(mmu_get_page((uintptr_t)nic->rx_virt[i],0),MMU_FLAG_WRITABLE|MMU_FLAG_WC,nic->rx[i].addr);
|
|
nic->rx[i].status = 0;
|
|
}
|
|
|
|
for (int i = 0; i < E1000_NUM_TX_DESC; ++i) {
|
|
nic->tx[i].addr = mmu_allocate_a_frame() << 12;
|
|
nic->tx_virt[i] = mmu_map_mmio_region(nic->tx[i].addr, 4096);
|
|
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->tx_virt[i],0),MMU_FLAG_WRITABLE|MMU_FLAG_WC);
|
|
memset(nic->tx_virt[i], 0, 4096);
|
|
nic->tx[i].status = 0;
|
|
nic->tx[i].cmd = (1 << 0);
|
|
}
|
|
|
|
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
|
|
command_reg |= (1 << 2);
|
|
command_reg |= (1 << 0);
|
|
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
|
|
|
|
delay_yield(10000);
|
|
|
|
/* Is this size enough? */
|
|
uint32_t initial_bar = pci_read_field(e1000_device_pci, PCI_BAR0, 4);
|
|
nic->mmio_addr = (uintptr_t)mmu_map_mmio_region(initial_bar, 0x8000);
|
|
|
|
eeprom_detect(nic);
|
|
read_mac(nic);
|
|
write_mac(nic);
|
|
|
|
#define CTRL_PHY_RST (1UL << 31UL)
|
|
#define CTRL_RST (1UL << 26UL)
|
|
#define CTRL_SLU (1UL << 6UL)
|
|
#define CTRL_LRST (1UL << 3UL)
|
|
|
|
nic->irq_number = pci_get_interrupt(e1000_device_pci);
|
|
irq_install_handler(nic->irq_number, irq_handler, nic->eth.if_name);
|
|
|
|
/* Disable interrupts */
|
|
ints_off(nic);
|
|
|
|
/* Turn off receive + transmit */
|
|
write_command(nic, E1000_REG_RCTRL, 0);
|
|
write_command(nic, E1000_REG_TCTRL, TCTL_PSP);
|
|
read_command(nic, E1000_REG_STATUS);
|
|
delay_yield(10000);
|
|
|
|
/* Reset everything */
|
|
uint32_t ctrl = read_command(nic, E1000_REG_CTRL);
|
|
ctrl |= CTRL_RST;
|
|
write_command(nic, E1000_REG_CTRL, ctrl);
|
|
delay_yield(20000);
|
|
|
|
/* Turn off interrupts _again_ */
|
|
ints_off(nic);
|
|
|
|
/* Recommended flow control settings? */
|
|
write_command(nic, 0x0028, 0x002C8001);
|
|
write_command(nic, 0x002c, 0x0100);
|
|
write_command(nic, 0x0030, 0x8808);
|
|
write_command(nic, 0x0170, 0xFFFF);
|
|
|
|
/* Link up */
|
|
uint32_t status = read_command(nic, E1000_REG_CTRL);
|
|
status |= CTRL_SLU;
|
|
status |= (2 << 8); /* Speed to gigabit... */
|
|
status &= ~CTRL_LRST;
|
|
status &= ~CTRL_PHY_RST;
|
|
write_command(nic, E1000_REG_CTRL, status);
|
|
|
|
/* Clear statistical counters */
|
|
for (int i = 0; i < 128; ++i) {
|
|
write_command(nic, 0x5200 + i * 4, 0);
|
|
}
|
|
|
|
for (int i = 0; i < 64; ++i) {
|
|
read_command(nic, 0x4000 + i * 4);
|
|
}
|
|
|
|
init_rx(nic);
|
|
init_tx(nic);
|
|
|
|
write_command(nic, E1000_REG_RDTR, 0);
|
|
write_command(nic, E1000_REG_ITR, 500);
|
|
read_command(nic, E1000_REG_STATUS);
|
|
|
|
nic->link_status = (read_command(nic, E1000_REG_STATUS) & (1 << 1));
|
|
|
|
nic->eth.device_node = calloc(sizeof(fs_node_t),1);
|
|
snprintf(nic->eth.device_node->name, 100, "%s", nic->eth.if_name);
|
|
nic->eth.device_node->flags = FS_BLOCKDEVICE; /* NETDEVICE? */
|
|
nic->eth.device_node->mask = 0666; /* temporary; shouldn't be doing this with these device files */
|
|
nic->eth.device_node->ioctl = ioctl_e1000;
|
|
nic->eth.device_node->write = write_e1000;
|
|
nic->eth.device_node->device = nic;
|
|
|
|
nic->eth.mtu = 1500; /* guess */
|
|
|
|
net_add_interface(nic->eth.if_name, nic->eth.device_node);
|
|
|
|
char worker_name[34];
|
|
snprintf(worker_name, 33, "[%s]", nic->eth.if_name);
|
|
nic->queuer = spawn_worker_thread(e1000_queuer, worker_name, nic);
|
|
|
|
nic->configured = 1;
|
|
|
|
/* Twiddle interrupts */
|
|
write_command(nic, E1000_REG_IMS, INTS);
|
|
delay_yield(10000);
|
|
}
|
|
|
|
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * found) {
|
|
if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea || deviceid == 0x10d3)) {
|
|
/* Allocate a device */
|
|
struct e1000_nic * nic = calloc(1,sizeof(struct e1000_nic));
|
|
nic->pci_device = device;
|
|
nic->deviceid = deviceid;
|
|
devices[device_count++] = nic;
|
|
|
|
snprintf(nic->eth.if_name, 31,
|
|
"enp%ds%d",
|
|
(int)pci_extract_bus(device),
|
|
(int)pci_extract_slot(device));
|
|
|
|
e1000_init(nic);
|
|
*(int*)found = 1;
|
|
}
|
|
}
|
|
|
|
static int e1000_install(int argc, char * argv[]) {
|
|
uint32_t found = 0;
|
|
pci_scan(&find_e1000, -1, &found);
|
|
|
|
if (!found) {
|
|
/* TODO: Clean up? Remove ourselves? */
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fini(void) {
|
|
/* TODO: Uninstall device */
|
|
return 0;
|
|
}
|
|
|
|
struct Module metadata = {
|
|
.name = "e1000",
|
|
.init = e1000_install,
|
|
.fini = fini,
|
|
};
|
|
|