toaruos/kernel/arch/x86_64/main.c

483 lines
14 KiB
C

/**
* @file kernel/arch/x86_64/main.c
* @brief Intel/AMD x86-64 (IA64/amd64) architecture-specific startup.
*
* Parses multiboot data, sets up GDT/IDT/TSS, initializes PML4 paging,
* and sets up PC device drivers (PS/2, port I/O, serial).
*/
#include <kernel/types.h>
#include <kernel/multiboot.h>
#include <kernel/symboltable.h>
#include <kernel/string.h>
#include <kernel/printf.h>
#include <kernel/pci.h>
#include <kernel/hashmap.h>
#include <kernel/process.h>
#include <kernel/vfs.h>
#include <kernel/mmu.h>
#include <kernel/video.h>
#include <kernel/generic.h>
#include <kernel/gzip.h>
#include <kernel/ramdisk.h>
#include <kernel/args.h>
#include <kernel/ksym.h>
#include <kernel/misc.h>
#include <kernel/version.h>
#include <kernel/arch/x86_64/ports.h>
#include <kernel/arch/x86_64/cmos.h>
#include <kernel/arch/x86_64/pml.h>
#include <errno.h>
extern void arch_clock_initialize(void);
extern char end[];
extern unsigned long tsc_mhz;
extern void gdt_install(void);
extern void idt_install(void);
extern void pic_initialize(void);
extern void pit_initialize(void);
extern void smp_initialize(void);
extern void portio_initialize(void);
extern void ps2hid_install(void);
extern void serial_initialize(void);
extern void fbterm_initialize(void);
extern void pci_remap(void);
struct multiboot * mboot_struct = NULL;
int mboot_is_2 = 0;
static int _serial_debug = 1;
#define EARLY_LOG_DEVICE 0x3F8
static size_t _early_log_write(size_t size, uint8_t * buffer) {
if (!_serial_debug) return size;
for (unsigned int i = 0; i < size; ++i) {
outportb(EARLY_LOG_DEVICE, buffer[i]);
}
return size;
}
static void early_log_initialize(void) {
outportb(EARLY_LOG_DEVICE + 3, 0x03); /* Disable divisor mode, set parity */
printf_output = &_early_log_write;
}
static uintptr_t highest_valid_address = 0;
static uintptr_t highest_kernel_address = (uintptr_t)&end;
struct MB2_TagHeader {
uint32_t type;
uint32_t size;
};
void * mboot2_find_next(char * current, uint32_t type) {
char * header = current;
struct MB2_TagHeader * tag = (void*)header;
while (1) {
if (tag->type == 0) return NULL;
if (tag->type == type) return tag;
/* Next tag */
header += tag->size;
while ((uintptr_t)header & 7) header++;
tag = (void*)header;
}
}
void * mboot2_find_tag(void * fromStruct, uint32_t type) {
char * header = (void*)fromStruct;
header += 8;
return mboot2_find_next(header, type);
}
struct MB2_MemoryMap {
struct MB2_TagHeader head;
uint32_t entry_size;
uint32_t entry_version;
char entries[];
};
struct MB2_MemoryMap_Entry {
uint64_t base_addr;
uint64_t length;
uint32_t type;
uint32_t reserved;
};
struct MB2_Framebuffer {
struct MB2_TagHeader head;
uint64_t addr;
uint32_t pitch;
uint32_t width;
uint32_t height;
uint8_t bpp;
uint8_t fb_type;
};
struct MB2_Module {
struct MB2_TagHeader head;
uint32_t mod_start;
uint32_t mod_end;
uint8_t cmdline[];
};
static void multiboot2_initialize(void * mboot) {
mboot_is_2 = 1;
dprintf("multiboot: Started with a Multiboot 2 loader\n");
struct MB2_MemoryMap * mmap = mboot2_find_tag(mboot, 6);
if (!mmap) {
printf("fatal: unable to boot without memory map from loader\n");
arch_fatal();
}
char * entry = mmap->entries;
while ((uintptr_t)entry < (uintptr_t)mmap + mmap->head.size) {
struct MB2_MemoryMap_Entry * this = (void*)entry;
if (this->type == 1 && this->length && this->base_addr + this->length - 1> highest_valid_address) {
highest_valid_address = this->base_addr + this->length - 1;
}
entry += mmap->entry_size;
}
struct MB2_Module * mod = mboot2_find_tag(mboot, 3);
while (mod) {
uintptr_t addr = (uintptr_t)mod->mod_end;
if (addr > highest_kernel_address) highest_kernel_address = addr;
mod = mboot2_find_next((char*)mod + mod->head.size, 3);
}
/* Round the max address up a page */
highest_kernel_address = (highest_kernel_address + 0xFFF) & 0xFFFFffffFFFFf000;
}
static void multiboot_initialize(struct multiboot * mboot) {
dprintf("multiboot: Started with a Multiboot 1 loader\n");
if (!(mboot->flags & MULTIBOOT_FLAG_MMAP)) {
printf("fatal: unable to boot without memory map from loader\n");
arch_fatal();
}
mboot_memmap_t * mmap = (void *)(uintptr_t)mboot->mmap_addr;
if ((uintptr_t)mmap + mboot->mmap_length > highest_kernel_address) {
highest_kernel_address = (uintptr_t)mmap + mboot->mmap_length;
}
while ((uintptr_t)mmap < mboot->mmap_addr + mboot->mmap_length) {
if (mmap->type == 1 && mmap->length && mmap->base_addr + mmap->length - 1> highest_valid_address) {
highest_valid_address = mmap->base_addr + mmap->length - 1;
}
mmap = (mboot_memmap_t *) ((uintptr_t)mmap + mmap->size + sizeof(uint32_t));
}
if (mboot->flags & MULTIBOOT_FLAG_MODS) {
mboot_mod_t * mods = (mboot_mod_t *)(uintptr_t)mboot->mods_addr;
for (unsigned int i = 0; i < mboot->mods_count; ++i) {
uintptr_t addr = (uintptr_t)mods[i].mod_end;
if (addr > highest_kernel_address) {
highest_kernel_address = addr;
}
}
}
/* Round the max address up a page */
highest_kernel_address = (highest_kernel_address + 0xFFF) & 0xFFFFffffFFFFf000;
}
void mboot_unmark_valid_memory(void) {
size_t frames_marked = 0;
if (mboot_is_2) {
struct MB2_MemoryMap * mmap = mboot2_find_tag(mboot_struct, 6);
char * entry = mmap->entries;
while ((uintptr_t)entry < (uintptr_t)mmap + mmap->head.size) {
struct MB2_MemoryMap_Entry * this = (void*)entry;
if (this->type == 1) {
for (uintptr_t base = this->base_addr; base < this->base_addr + (this->length & 0xFFFFffffFFFFf000); base += 0x1000) {
mmu_frame_clear(base);
frames_marked++;
}
}
entry += mmap->entry_size;
}
} else {
mboot_memmap_t * mmap = mmu_map_from_physical((uintptr_t)mboot_struct->mmap_addr);
while ((uintptr_t)mmap < (uintptr_t)mmu_map_from_physical(mboot_struct->mmap_addr + mboot_struct->mmap_length)) {
if (mmap->type == 1) {
for (uintptr_t base = mmap->base_addr; base < mmap->base_addr + (mmap->length & 0xFFFFffffFFFFf000); base += 0x1000) {
mmu_frame_clear(base);
frames_marked++;
}
}
mmap = (mboot_memmap_t *) ((uintptr_t)mmap + mmap->size + sizeof(uint32_t));
}
}
}
static void symbols_install(void) {
ksym_install();
kernel_symbol_t * k = (kernel_symbol_t *)&kernel_symbols_start;
while ((uintptr_t)k < (uintptr_t)&kernel_symbols_end) {
ksym_bind(k->name, (void*)k->addr);
k = (kernel_symbol_t *)((uintptr_t)k + sizeof *k + strlen(k->name) + 1);
}
}
/**
* @brief Initializes the page attribute table.
* FIXME: This seems to be assuming the lower entries are
* already sane - we should probably initialize all
* of the entries ourselves.
*/
void pat_initialize(void) {
asm volatile (
"mov $0x277, %%ecx\n" /* IA32_MSR_PAT */
"rdmsr\n"
"or $0x1000000, %%edx\n" /* set bit 56 */
"and $0xf9ffffff, %%edx\n" /* unset bits 57, 58 */
"wrmsr\n"
: : : "ecx", "edx", "eax"
);
}
/**
* @brief Turns on the floating-point unit.
*
* Enables a few bits so we can get SSE.
*
* We don't do any fancy lazy FPU reload as x86-64 assumes a wide
* variety of FPU-provided registers are available so most userspace
* code will be messing with the FPU anyway and we'd probably just
* waste time with all the interrupts turning it off and on...
*/
void fpu_initialize(void) {
asm volatile (
"clts\n"
"mov %%cr0, %%rax\n"
"and $0xFFFD, %%ax\n"
"or $0x10, %%ax\n"
"mov %%rax, %%cr0\n"
"fninit\n"
"mov %%cr0, %%rax\n"
"and $0xfffb, %%ax\n"
"or $0x0002, %%ax\n"
"mov %%rax, %%cr0\n"
"mov %%cr4, %%rax\n"
"or $0x600, %%rax\n"
"mov %%rax, %%cr4\n"
"push $0x1F80\n"
"ldmxcsr (%%rsp)\n"
"addq $8, %%rsp\n"
: : : "rax");
}
static void mount_ramdisk(uintptr_t addr, size_t len) {
uint8_t * data = mmu_map_from_physical(addr);
if (data[0] == 0x1F && data[1] == 0x8B) {
/* Yes - decompress it first */
dprintf("multiboot: Decompressing initial ramdisk...\n");
uint32_t decompressedSize = *(uint32_t*)mmu_map_from_physical(addr + len - sizeof(uint32_t));
size_t pageCount = (((size_t)decompressedSize + 0xFFF) & ~(0xFFF)) >> 12;
uintptr_t physicalAddress = mmu_allocate_n_frames(pageCount) << 12;
if (physicalAddress == (uintptr_t)-1) {
dprintf("gzip: failed to allocate pages\n");
return;
}
gzip_inputPtr = (void*)data;
gzip_outputPtr = mmu_map_from_physical(physicalAddress);
/* Do the deed */
if (gzip_decompress()) {
dprintf("gzip: failed to decompress payload\n");
return;
}
ramdisk_mount(physicalAddress, decompressedSize);
dprintf("multiboot: Decompressed %lu kB to %u kB.\n",
(len) / 1024,
(decompressedSize) / 1024);
/* Free the pages from the original mod */
for (size_t j = addr; j < addr + len; j += 0x1000) {
mmu_frame_clear(j);
}
} else {
/* No, or it doesn't look like one - mount it directly */
dprintf("multiboot: Mounting uncompressed ramdisk.\n");
ramdisk_mount(addr, len);
}
}
/**
* @brief Decompress compressed ramdisks and hand them to the ramdisk driver.
*
* Reads through the list of modules passed by a multiboot-compatible loader
* and determines if they are gzip-compressed, decompresses if they are, and
* finally hands them to the VFS driver. The VFS ramdisk driver takes control
* of linear sets of physical pages, and handles mapping them somewhere to
* provide reads in userspace, as well as freeing them if requested.
*/
void mount_multiboot_ramdisks(struct multiboot * mboot) {
/* ramdisk_mount takes physical pages, it will map them itself. */
if (mboot_is_2) {
struct MB2_Module * mod = mboot2_find_tag(mboot_struct, 3);
while (mod) {
uintptr_t address = mod->mod_start;
size_t length = mod->mod_end - mod->mod_start;
mount_ramdisk(address, length);
mod = mboot2_find_next((char*)mod + mod->head.size, 3);
}
} else {
mboot_mod_t * mods = mmu_map_from_physical(mboot->mods_addr);
for (unsigned int i = 0; i < mboot->mods_count; ++i) {
uint64_t address = mods[i].mod_start;
uint64_t length = mods[i].mod_end - mods[i].mod_start;
mount_ramdisk(address, length);
}
}
}
/**
* x86-64: The kernel commandline is retrieved from the multiboot struct.
*/
const char * arch_get_cmdline(void) {
if (mboot_is_2) {
struct loader { uint32_t type; uint32_t size; char name[]; } * loader = mboot2_find_tag(mboot_struct, 1);
if (loader) {
return loader->name;
}
return "";
} else {
return mmu_map_from_physical(mboot_struct->cmdline);
}
}
/**
* x86-64: The bootloader name is retrieved from the multiboot struct.
*/
const char * arch_get_loader(void) {
if (mboot_is_2) {
struct loader { uint32_t type; uint32_t size; char name[]; } * loader = mboot2_find_tag(mboot_struct, 2);
if (loader) {
return loader->name;
}
} else if (mboot_struct->flags & MULTIBOOT_FLAG_LOADER) {
return mmu_map_from_physical(mboot_struct->boot_loader_name);
}
return "(unknown)";
}
/**
* x86-64: The GS register, which is set by a pair of MSRs, tracks per-CPU kernel state.
*/
void arch_set_core_base(uintptr_t base) {
asm volatile ("wrmsr" : : "c"(0xc0000101), "d"((uint32_t)(base >> 32)), "a"((uint32_t)(base & 0xFFFFFFFF)));
asm volatile ("wrmsr" : : "c"(0xc0000102), "d"((uint32_t)(base >> 32)), "a"((uint32_t)(base & 0xFFFFFFFF)));
asm volatile ("swapgs");
}
void arch_framebuffer_initialize(void) {
extern uint8_t * lfb_vid_memory;
extern uint16_t lfb_resolution_x;
extern uint16_t lfb_resolution_y;
extern uint32_t lfb_resolution_s;
extern uint16_t lfb_resolution_b;
if (!mboot_is_2) {
lfb_vid_memory = mmu_map_from_physical(mboot_struct->framebuffer_addr);
lfb_resolution_x = mboot_struct->framebuffer_width;
lfb_resolution_y = mboot_struct->framebuffer_height;
lfb_resolution_s = mboot_struct->framebuffer_pitch;
lfb_resolution_b = mboot_struct->framebuffer_bpp;
} else {
struct MB2_Framebuffer * fb = mboot2_find_tag(mboot_struct, 8);
if (fb) {
lfb_vid_memory = mmu_map_from_physical(fb->addr);
lfb_resolution_x = fb->width;
lfb_resolution_y = fb->height;
lfb_resolution_s = fb->pitch;
lfb_resolution_b = fb->bpp;
}
}
}
/**
* @brief x86-64 multiboot C entrypoint.
*
* Called by the x86-64 longmode bootstrap.
*/
int kmain(struct multiboot * mboot, uint32_t mboot_mag, void* esp) {
/* The debug log is over /dev/ttyS0, but skips the PTY interface; it's available
* as soon as we can call printf(), which is as soon as we get to long mode. */
early_log_initialize();
dprintf("%s %d.%d.%d-%s %s %s\n",
__kernel_name,
__kernel_version_major,
__kernel_version_minor,
__kernel_version_lower,
__kernel_version_suffix,
__kernel_version_codename,
__kernel_arch);
/* Initialize GS base */
arch_set_core_base((uintptr_t)&processor_local_data[0]);
/* Time the TSC and get the initial boot time from the RTC. */
arch_clock_initialize();
/* Parse multiboot data so we can get memory map, modules, command line, etc. */
if (mboot_mag == 0x36d76289) {
multiboot2_initialize(mboot);
} else {
multiboot_initialize(mboot);
}
/* multiboot memory is now mapped high, if you want it. */
mboot_struct = mmu_map_from_physical((uintptr_t)mboot);
/* memCount and maxAddress come from multiboot data */
mmu_init(highest_valid_address, highest_kernel_address);
/* With the MMU initialized, set up things required for the scheduler. */
pat_initialize();
symbols_install();
gdt_install();
idt_install();
fpu_initialize();
pic_initialize();
/* Early generic stuff */
generic_startup();
/* Should we override the TSC timing? */
if (args_present("tsc_mhz")) {
tsc_mhz = atoi(args_value("tsc_mhz"));
}
if (!args_present("debug")) {
_serial_debug = 0;
}
/* Scheduler is running and we have parsed the kcmdline, initialize video. */
framebuffer_initialize();
fbterm_initialize();
smp_initialize();
/* Decompress and mount all initial ramdisks. */
mount_multiboot_ramdisks(mboot_struct);
/* Set up preempt source */
pit_initialize();
/* Install generic PC device drivers. */
ps2hid_install();
serial_initialize();
portio_initialize();
/* Yield to the generic main, which starts /bin/init */
return generic_main();
}