toaruos/kernel/audio/snd.c
2021-05-31 10:54:11 +09:00

291 lines
7.4 KiB
C

/**
* @file kernel/audio/snd.c
* @brief Gerow's Audio Subsystem for ToaruOS
*
* Simple generic mixer interface. Allows userspace to pipe audio data
* to the kernel audio drivers and control volume knobs.
*
* Currently has the ability to mix several sound sources together. Could use
* a /dev/mixer device to allow changing of audio settings. Also could use
* the ability to change frequency and format for audio samples. Also doesn't
* really support multiple devices despite the interface suggesting it might...
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2015 Mike Gerow
*/
#include <kernel/types.h>
#include <kernel/string.h>
#include <kernel/ringbuffer.h>
#include <kernel/list.h>
#include <kernel/printf.h>
#include <kernel/spinlock.h>
#include <kernel/mod/snd.h>
#include <errno.h>
/* Utility macros */
#define N_ELEMENTS(arr) (sizeof(arr) / sizeof((arr)[0]))
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define SND_BUF_SIZE 0x4000
static uint64_t snd_dsp_write(fs_node_t * node, uint64_t offset, uint64_t size, uint8_t *buffer);
static int snd_dsp_ioctl(fs_node_t * node, int request, void * argp);
static void snd_dsp_open(fs_node_t * node, unsigned int flags);
static void snd_dsp_close(fs_node_t * node);
static int snd_mixer_ioctl(fs_node_t * node, int request, void * argp);
static void snd_mixer_open(fs_node_t * node, unsigned int flags);
static void snd_mixer_close(fs_node_t * node);
static spin_lock_t _devices_lock;
static list_t _devices;
static fs_node_t _dsp_fnode = {
.name = "dsp",
.device = &_devices,
.mask = 0666,
.flags = FS_CHARDEVICE,
.ioctl = snd_dsp_ioctl,
.write = snd_dsp_write,
.open = snd_dsp_open,
.close = snd_dsp_close,
};
static fs_node_t _mixer_fnode = {
.name = "mixer",
.mask = 0666,
.flags = FS_CHARDEVICE,
.ioctl = snd_mixer_ioctl,
.open = snd_mixer_open,
.close = snd_mixer_close,
};
static spin_lock_t _buffers_lock;
static list_t _buffers;
static uint32_t _next_device_id = SND_DEVICE_MAIN;
struct dsp_node {
ring_buffer_t * rb;
size_t samples;
size_t written;
int realtime;
};
int snd_register(snd_device_t * device) {
int rv = 0;
spin_lock(_devices_lock);
device->id = _next_device_id;
_next_device_id++;
if (list_find(&_devices, device)) {
rv = -1;
goto snd_register_cleanup;
}
list_insert(&_devices, device);
snd_register_cleanup:
spin_unlock(_devices_lock);
return rv;
}
int snd_unregister(snd_device_t * device) {
int rv = 0;
node_t * node = list_find(&_devices, device);
if (!node) {
printf("attempted to unregister unknown audio sink: %s\n", device->name);
goto snd_unregister_cleanup;
}
list_delete(&_devices, node);
snd_unregister_cleanup:
spin_unlock(_devices_lock);
return rv;
}
static uint64_t snd_dsp_write(fs_node_t * node, uint64_t offset, uint64_t size, uint8_t *buffer) {
if (!_devices.length) return -1; /* No sink available. */
struct dsp_node * dsp = node->device;
size_t s = ring_buffer_available(dsp->rb);
size_t out;
if (size > s && dsp->realtime) {
out = ring_buffer_write(dsp->rb, s & ~0x3, buffer);
} else {
out = ring_buffer_write(dsp->rb, size, buffer);
}
dsp->written += out / 4;
return out;
}
static int snd_dsp_ioctl(fs_node_t * node, int request, void * argp) {
/* Potentially use this to set sample rates in the future */
struct dsp_node * dsp = node->device;
if (request == 4) {
dsp->realtime = 1;
} else if (request == 5) {
return dsp->samples;
}
return -1;
}
static void snd_dsp_open(fs_node_t * node, unsigned int flags) {
/*
* XXX(gerow): A process could take the memory of the entire system by opening
* too many of these...
*/
/* Allocate a buffer for the node and keep a reference for ourselves */
struct dsp_node * dsp = malloc(sizeof(struct dsp_node));
dsp->rb = ring_buffer_create(SND_BUF_SIZE);
dsp->samples = 0;
dsp->written = 0;
dsp->realtime = 0;
node->device = dsp;
spin_lock(_buffers_lock);
list_insert(&_buffers, node->device);
spin_unlock(_buffers_lock);
}
static void snd_dsp_close(fs_node_t * node) {
struct dsp_node * dsp = node->device;
spin_lock(_buffers_lock);
list_delete(&_buffers, list_find(&_buffers, dsp));
spin_unlock(_buffers_lock);
ring_buffer_destroy(dsp->rb);
free(dsp->rb);
free(dsp);
}
static snd_device_t * snd_device_by_id(uint32_t device_id) {
spin_lock(_devices_lock);
snd_device_t * out = NULL;
snd_device_t * cur = NULL;
foreach(node, &_devices) {
cur = node->value;
if (cur->id == device_id) {
out = cur;
}
}
spin_unlock(_devices_lock);
return out;
}
static int snd_mixer_ioctl(fs_node_t * node, int request, void * argp) {
switch (request) {
case SND_MIXER_GET_KNOBS: {
snd_knob_list_t * list = argp;
snd_device_t * device = snd_device_by_id(list->device);
if (!device) {
return -EINVAL;
}
list->num = device->num_knobs;
for (uint32_t i = 0; i < device->num_knobs; i++) {
list->ids[i] = device->knobs[i].id;
}
return 0;
}
case SND_MIXER_GET_KNOB_INFO: {
snd_knob_info_t * info = argp;
snd_device_t * device = snd_device_by_id(info->device);
if (!device) {
return -EINVAL;
}
for (uint32_t i = 0; i < device->num_knobs; i++) {
if (device->knobs[i].id == info->id) {
memcpy(info->name, device->knobs[i].name, sizeof(info->name));
return 0;
}
}
return -EINVAL;
}
case SND_MIXER_READ_KNOB: {
snd_knob_value_t * value = argp;
snd_device_t * device = snd_device_by_id(value->device);
if (!device) {
return -EINVAL;
}
return device->mixer_read(value->id, &value->val);
}
case SND_MIXER_WRITE_KNOB: {
snd_knob_value_t * value = argp;
snd_device_t * device = snd_device_by_id(value->device);
if (!device) {
return -EINVAL;
}
return device->mixer_write(value->id, value->val);
}
default: {
return -EINVAL;
}
}
}
static void snd_mixer_open(fs_node_t * node, unsigned int flags) {
return;
}
static void snd_mixer_close(fs_node_t * node) {
return;
}
int snd_request_buf(snd_device_t * device, uint32_t size, uint8_t *buffer) {
static int16_t tmp_buf[0x100];
memset(buffer, 0, size);
spin_lock(_buffers_lock);
foreach(buf_node, &_buffers) {
struct dsp_node * dsp = buf_node->value;
ring_buffer_t * buf = dsp->rb;
/* ~0x3 is to ensure we don't read partial samples or just a single channel */
size_t bytes_left = MIN(ring_buffer_unread(buf) & ~0x3, size);
int16_t * adding_ptr = (int16_t *) buffer;
while (bytes_left) {
size_t this_read_size = MIN(bytes_left, sizeof(tmp_buf));
ring_buffer_read(buf, this_read_size, (uint8_t *)tmp_buf);
dsp->samples += this_read_size / 4; /* 16 bits, 2 channels */
/*
* Reduce the sample by a half so that multiple sources won't immediately
* cause awful clipping. This is kind of a hack since it would probably be
* better to just use some kind of compressor.
*/
for (size_t i = 0; i < N_ELEMENTS(tmp_buf); i++) {
tmp_buf[i] /= 2;
}
for (size_t i = 0; i < this_read_size / sizeof(*adding_ptr); i++) {
adding_ptr[i] += tmp_buf[i];
}
adding_ptr += this_read_size / sizeof(*adding_ptr);
bytes_left -= this_read_size;
}
}
spin_unlock(_buffers_lock);
return size;
}
static snd_device_t * snd_main_device() {
spin_lock(_devices_lock);
foreach(node, &_devices) {
spin_unlock(_devices_lock);
return node->value;
}
spin_unlock(_devices_lock);
return NULL;
}
void snd_install(void) {
vfs_mount("/dev/dsp", &_dsp_fnode);
vfs_mount("/dev/mixer", &_mixer_fnode);
}