toaruos/kernel/vfs/vfs.c

1129 lines
27 KiB
C

/**
* @file kernel/vfs/vfs.c
* @brief Virtual file system.
*
* Provides the high-level generic operations for the VFS.
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2011-2021 K. Lange
* Copyright (C) 2014 Lioncash
* Copyright (C) 2012 Tianyi Wang
*/
#include <stddef.h>
#include <stdint.h>
#include <errno.h>
#include <kernel/printf.h>
#include <kernel/string.h>
#include <kernel/vfs.h>
#include <kernel/time.h>
#include <kernel/process.h>
#include <kernel/list.h>
#include <kernel/hashmap.h>
#include <kernel/tree.h>
#include <kernel/spinlock.h>
#define MAX_SYMLINK_DEPTH 8
#define MAX_SYMLINK_SIZE 4096
tree_t * fs_tree = NULL; /* File system mountpoint tree */
fs_node_t * fs_root = NULL; /* Pointer to the root mount fs_node (must be some form of filesystem, even ramdisk) */
hashmap_t * fs_types = NULL;
#define MIN(l,r) ((l) < (r) ? (l) : (r))
#define MAX(l,r) ((l) > (r) ? (l) : (r))
#define debug_print(x, ...) do { if (0) {printf("vfs.c [%s] ", #x); printf(__VA_ARGS__); printf("\n"); } } while (0)
static int cb_printf(void * user, char c) {
fs_node_t * f = user;
write_fs(f, 0, 1, (uint8_t*)&c);
return 0;
}
/**
* @brief Write printf output to a simple file node.
*
* The file node, f, must be a simple character device that
* allows repeated writes of a single byte without an incrementing
* offset, such as a serial port or TTY.
*/
int fprintf(fs_node_t * f, const char * fmt, ...) {
va_list args;
va_start(args, fmt);
int out = xvasprintf(cb_printf, f, fmt, args);
va_end(args);
return out;
}
int has_permission(fs_node_t * node, int permission_bit) {
if (!node) return 0;
if (this_core->current_process->user == 0 && permission_bit != 01) { /* even root needs exec to exec */
return 1;
}
uint64_t permissions = node->mask;
uint8_t my_permissions = (permissions) & 07;
uint8_t user_perm = (permissions >> 6) & 07;
uint8_t group_perm = (permissions >> 3) & 07;
if (this_core->current_process->user == node->uid) my_permissions |= user_perm;
if (this_core->current_process->user_group == node->gid) my_permissions |= group_perm;
else if (this_core->current_process->supplementary_group_count) {
for (int i = 0; i < this_core->current_process->supplementary_group_count; ++i) {
if (this_core->current_process->supplementary_group_list[i] == node->gid) {
my_permissions |= group_perm;
}
}
}
return (permission_bit & my_permissions);
}
static struct dirent * readdir_mapper(fs_node_t *node, unsigned long index) {
tree_node_t * d = (tree_node_t *)node->device;
if (!d) return NULL;
if (index == 0) {
struct dirent * dir = malloc(sizeof(struct dirent));
strcpy(dir->d_name, ".");
dir->d_ino = 0;
return dir;
} else if (index == 1) {
struct dirent * dir = malloc(sizeof(struct dirent));
strcpy(dir->d_name, "..");
dir->d_ino = 1;
return dir;
}
index -= 2;
unsigned long i = 0;
foreach(child, d->children) {
if (i == index) {
/* Recursively print the children */
tree_node_t * tchild = (tree_node_t *)child->value;
struct vfs_entry * n = (struct vfs_entry *)tchild->value;
struct dirent * dir = malloc(sizeof(struct dirent));
size_t len = strlen(n->name) + 1;
memcpy(&dir->d_name, n->name, MIN(256, len));
dir->d_ino = i;
return dir;
}
++i;
}
return NULL;
}
static fs_node_t * vfs_mapper(void) {
fs_node_t * fnode = malloc(sizeof(fs_node_t));
memset(fnode, 0x00, sizeof(fs_node_t));
fnode->mask = 0555;
fnode->flags = FS_DIRECTORY;
fnode->readdir = readdir_mapper;
fnode->ctime = now();
fnode->mtime = now();
fnode->atime = now();
return fnode;
}
/**
* @brief Check if a read from this file would block.
*/
int selectcheck_fs(fs_node_t * node) {
if (!node) return -ENOENT;
if (node->selectcheck) {
return node->selectcheck(node);
}
return -EINVAL;
}
/**
* @brief Inform a node that it should alert the current_process.
*/
int selectwait_fs(fs_node_t * node, void * process) {
if (!node) return -ENOENT;
if (node->selectwait) {
return node->selectwait(node, process);
}
return -EINVAL;
}
/**
* @brief Read a file system node based on its underlying type.
*
* @param node Node to read
* @param offset Offset into the node data to read from
* @param size How much data to read (in bytes)
* @param buffer A buffer to copy of the read data into
* @returns Bytes read
*/
ssize_t read_fs(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) {
if (!node) return -ENOENT;
if (node->read) {
return node->read(node, offset, size, buffer);
} else {
return -EINVAL;
}
}
/**
* @brief Write a file system node based on its underlying type.
*
* @param node Node to write to
* @param offset Offset into the node data to write to
* @param size How much data to write (in bytes)
* @param buffer A buffer to copy from
* @returns Bytes written
*/
ssize_t write_fs(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) {
if (!node) return -ENOENT;
if (node->write) {
return node->write(node, offset, size, buffer);
} else {
return -EROFS;
}
}
/**
* @brief set the size of a file to 9
*
* @param node File to resize
*/
int truncate_fs(fs_node_t * node) {
if (!node) return -ENOENT;
if (node->truncate) {
return node->truncate(node);
}
return -EINVAL;
}
//volatile uint8_t tmp_refcount_lock = 0;
static spin_lock_t tmp_refcount_lock = { 0 };
void vfs_lock(fs_node_t * node) {
spin_lock(tmp_refcount_lock);
node->refcount = -1;
spin_unlock(tmp_refcount_lock);
}
/**
* @brief Open a file system node.
*
* @param node Node to open
* @param flags Same as open, specifies read/write/append/truncate
*/
void open_fs(fs_node_t *node, unsigned int flags) {
if (!node) return;
if (node->refcount >= 0) {
spin_lock(tmp_refcount_lock);
node->refcount++;
spin_unlock(tmp_refcount_lock);
}
if (node->open) {
node->open(node, flags);
}
}
/**
* @brief Close a file system node
*
* @param node Node to close
*/
void close_fs(fs_node_t *node) {
//assert(node != fs_root && "Attempted to close the filesystem root. kablooey");
if (!node) {
debug_print(WARNING, "Double close? This isn't an fs_node.");
return;
}
if (node->refcount == -1) return;
spin_lock(tmp_refcount_lock);
node->refcount--;
if (node->refcount == 0) {
debug_print(NOTICE, "Node refcount [%s] is now 0: %ld", node->name, node->refcount);
if (node->close) {
node->close(node);
}
free(node);
}
spin_unlock(tmp_refcount_lock);
}
/**
* @brief Change permissions for a file system node.
*
* @param node Node to change permissions for
* @param mode New mode bits
*/
int chmod_fs(fs_node_t *node, mode_t mode) {
if (node->chmod) {
return node->chmod(node, mode);
}
return 0;
}
/**
* @brief Change ownership for a file system node.
*/
int chown_fs(fs_node_t *node, uid_t uid, gid_t gid) {
if (node->chown) {
return node->chown(node, uid, gid);
}
return 0;
}
/**
* @brief Read a directory for the requested index
*
* @param node Directory to read
* @param index Offset to look for
* @returns A dirent object.
*/
struct dirent *readdir_fs(fs_node_t *node, unsigned long index) {
if (!node) return NULL;
if ((node->flags & FS_DIRECTORY) && node->readdir) {
return node->readdir(node, index);
} else {
return NULL;
}
}
/**
* @brief Find the requested file in the directory and return an fs_node for it
*
* @param node Directory to search
* @param name File to look for
* @returns An fs_node that the caller can free
*/
fs_node_t *finddir_fs(fs_node_t *node, char *name) {
if (!node) return NULL;
if ((node->flags & FS_DIRECTORY) && node->finddir) {
return node->finddir(node, name);
} else {
debug_print(WARNING, "Node passed to finddir_fs isn't a directory!");
debug_print(WARNING, "node = %p, name = %s", (void*)node, name);
return NULL;
}
}
/**
* @brief Control Device
*
* @param node Device node to control
* @param request Device-specific request code
* @param argp Depends on `request`
* @returns Depends on `request`
*/
int ioctl_fs(fs_node_t *node, unsigned long request, void * argp) {
if (!node) return -ENOENT;
if (node->ioctl) {
return node->ioctl(node, request, argp);
} else {
return -EINVAL;
}
}
/*
* XXX: The following two function should be replaced with
* one function to create children of directory nodes.
* There is no fundamental difference between a directory
* and a file, thus, the use of flag sets should suffice
*/
int create_file_fs(char *name, mode_t permission) {
fs_node_t * parent;
char *cwd = (char *)(this_core->current_process->wd_name);
char *path = canonicalize_path(cwd, name);
char * parent_path = malloc(strlen(path) + 5);
snprintf(parent_path, strlen(path) + 4, "%s/..", path);
char * f_path = path + strlen(path) - 1;
while (f_path > path) {
if (*f_path == '/') {
f_path += 1;
break;
}
f_path--;
}
while (*f_path == '/') {
f_path++;
}
debug_print(NOTICE, "creating file %s within %s (hope these strings are good)", f_path, parent_path);
parent = kopen(parent_path, 0);
free(parent_path);
if (!parent) {
debug_print(WARNING, "failed to open parent");
free(path);
return -ENOENT;
}
if (!has_permission(parent, 02)) {
debug_print(WARNING, "bad permissions");
return -EACCES;
}
int ret = 0;
if (parent->create) {
ret = parent->create(parent, f_path, permission);
} else {
ret = -EINVAL;
}
free(path);
free(parent);
return ret;
}
int unlink_fs(char * name) {
fs_node_t * parent;
char *cwd = (char *)(this_core->current_process->wd_name);
char *path = canonicalize_path(cwd, name);
char * parent_path = malloc(strlen(path) + 5);
snprintf(parent_path, strlen(path) + 4, "%s/..", path);
char * f_path = path + strlen(path) - 1;
while (f_path > path) {
if (*f_path == '/') {
f_path += 1;
break;
}
f_path--;
}
while (*f_path == '/') {
f_path++;
}
debug_print(WARNING, "unlinking file %s within %s (hope these strings are good)", f_path, parent_path);
parent = kopen(parent_path, 0);
free(parent_path);
if (!parent) {
free(path);
return -ENOENT;
}
if (!has_permission(parent, 02)) {
free(path);
close_fs(parent);
return -EACCES;
}
int ret = 0;
if (parent->unlink) {
ret = parent->unlink(parent, f_path);
} else {
ret = -EINVAL;
}
free(path);
close_fs(parent);
return ret;
}
int mkdir_fs(char *name, mode_t permission) {
fs_node_t * parent;
char *cwd = (char *)(this_core->current_process->wd_name);
char *path = canonicalize_path(cwd, name);
if (!name || !strlen(name)) {
return -EINVAL;
}
char * parent_path = malloc(strlen(path) + 5);
snprintf(parent_path, strlen(path) + 4, "%s/..", path);
char * f_path = path + strlen(path) - 1;
while (f_path > path) {
if (*f_path == '/') {
f_path += 1;
break;
}
f_path--;
}
while (*f_path == '/') {
f_path++;
}
debug_print(WARNING, "creating directory %s within %s (hope these strings are good)", f_path, parent_path);
parent = kopen(parent_path, 0);
free(parent_path);
if (!parent) {
free(path);
return -ENOENT;
}
if (!f_path || !strlen(f_path)) {
/* Odd edge case with / */
return -EEXIST;
}
fs_node_t * this = kopen(path, 0);
int _exists = 0;
if (this) { /* We need to do this because permission check stuff... */
close_fs(this);
_exists = 1;
}
if (!has_permission(parent, 02)) {
free(path);
close_fs(parent);
return _exists ? -EEXIST : -EACCES;
}
int ret = 0;
if (parent->mkdir) {
ret = parent->mkdir(parent, f_path, permission);
} else {
ret = -EROFS;
}
free(path);
close_fs(parent);
return ret;
}
fs_node_t *clone_fs(fs_node_t *source) {
if (!source) return NULL;
if (source->refcount >= 0) {
spin_lock(tmp_refcount_lock);
source->refcount++;
spin_unlock(tmp_refcount_lock);
}
return source;
}
int symlink_fs(char * target, char * name) {
fs_node_t * parent;
char *cwd = (char *)(this_core->current_process->wd_name);
char *path = canonicalize_path(cwd, name);
char * parent_path = malloc(strlen(path) + 5);
snprintf(parent_path, strlen(path) + 4, "%s/..", path);
char * f_path = path + strlen(path) - 1;
while (f_path > path) {
if (*f_path == '/') {
f_path += 1;
break;
}
f_path--;
}
debug_print(NOTICE, "creating symlink %s within %s", f_path, parent_path);
parent = kopen(parent_path, 0);
free(parent_path);
if (!parent) {
free(path);
return -ENOENT;
}
int ret = 0;
if (parent->symlink) {
ret = parent->symlink(parent, target, f_path);
} else {
ret = -EINVAL;
}
free(path);
close_fs(parent);
return ret;
}
ssize_t readlink_fs(fs_node_t *node, char * buf, size_t size) {
if (!node) return -ENOENT;
if (node->readlink) {
return node->readlink(node, buf, size);
} else {
return -EINVAL;
}
}
/**
* @brief Canonicalize a path.
*
* @param cwd Current working directory
* @param input Path to append or canonicalize on
* @returns An absolute path string
*/
char *canonicalize_path(const char *cwd, const char *input) {
/* This is a stack-based canonicalizer; we use a list as a stack */
list_t *out = list_create("vfs canonicalize_path working memory",input);
/*
* If we have a relative path, we need to canonicalize
* the working directory and insert it into the stack.
*/
if (strlen(input) && input[0] != PATH_SEPARATOR) {
/* Make a copy of the working directory */
char *path = malloc((strlen(cwd) + 1) * sizeof(char));
memcpy(path, cwd, strlen(cwd) + 1);
/* Setup tokenizer */
char *pch;
char *save;
pch = strtok_r(path,PATH_SEPARATOR_STRING,&save);
/* Start tokenizing */
while (pch != NULL) {
/* Make copies of the path elements */
char *s = malloc(sizeof(char) * (strlen(pch) + 1));
memcpy(s, pch, strlen(pch) + 1);
/* And push them */
list_insert(out, s);
pch = strtok_r(NULL,PATH_SEPARATOR_STRING,&save);
}
free(path);
}
/* Similarly, we need to push the elements from the new path */
char *path = malloc((strlen(input) + 1) * sizeof(char));
memcpy(path, input, strlen(input) + 1);
/* Initialize the tokenizer... */
char *pch;
char *save;
pch = strtok_r(path,PATH_SEPARATOR_STRING,&save);
/*
* Tokenize the path, this time, taking care to properly
* handle .. and . to represent up (stack pop) and current
* (do nothing)
*/
while (pch != NULL) {
if (!strcmp(pch,PATH_UP)) {
/*
* Path = ..
* Pop the stack to move up a directory
*/
node_t * n = list_pop(out);
if (n) {
free(n->value);
free(n);
}
} else if (!strcmp(pch,PATH_DOT)) {
/*
* Path = .
* Do nothing
*/
} else {
/*
* Regular path, push it
* XXX: Path elements should be checked for existence!
*/
char * s = malloc(sizeof(char) * (strlen(pch) + 1));
memcpy(s, pch, strlen(pch) + 1);
list_insert(out, s);
}
pch = strtok_r(NULL, PATH_SEPARATOR_STRING, &save);
}
free(path);
/* Calculate the size of the path string */
size_t size = 0;
foreach(item, out) {
/* Helpful use of our foreach macro. */
size += strlen(item->value) + 1;
}
/* join() the list */
char *output = malloc(sizeof(char) * (size + 1));
char *output_offset = output;
if (size == 0) {
/*
* If the path is empty, we take this to mean the root
* thus we synthesize a path of "/" to return.
*/
output = realloc(output, sizeof(char) * 2);
output[0] = PATH_SEPARATOR;
output[1] = '\0';
} else {
/* Otherwise, append each element together */
foreach(item, out) {
output_offset[0] = PATH_SEPARATOR;
output_offset++;
memcpy(output_offset, item->value, strlen(item->value) + 1);
output_offset += strlen(item->value);
}
}
/* Clean up the various things we used to get here */
list_destroy(out);
list_free(out);
free(out);
/* And return a working, absolute path */
return output;
}
void vfs_install(void) {
/* Initialize the mountpoint tree */
fs_tree = tree_create();
struct vfs_entry * root = malloc(sizeof(struct vfs_entry));
root->name = strdup("[root]");
root->file = NULL; /* Nothing mounted as root */
root->fs_type = NULL;
root->device = NULL;
tree_set_root(fs_tree, root);
fs_types = hashmap_create(5);
}
int vfs_register(const char * name, vfs_mount_callback callback) {
if (hashmap_get(fs_types, name)) return 1;
hashmap_set(fs_types, name, (void *)(uintptr_t)callback);
return 0;
}
int vfs_mount_type(const char * type, const char * arg, const char * mountpoint) {
vfs_mount_callback t = (vfs_mount_callback)(uintptr_t)hashmap_get(fs_types, type);
if (!t) {
debug_print(WARNING, "Unknown filesystem type: %s", type);
return -ENODEV;
}
fs_node_t * n = t(arg, mountpoint);
/* Quick hack to let partition mappers not return a node to mount at 'mountpoint'... */
if ((uintptr_t)n == (uintptr_t)1) return 0;
if (!n) return -EINVAL;
tree_node_t * node = vfs_mount(mountpoint, n);
if (node && node->value) {
struct vfs_entry * ent = (struct vfs_entry *)node->value;
ent->fs_type = strdup(type);
ent->device = strdup(arg);
}
debug_print(NOTICE, "Mounted %s[%s] to %s: %p", type, arg, mountpoint, (void*)n);
debug_print_vfs_tree();
return 0;
}
static spin_lock_t tmp_vfs_lock = { 0 };
/**
* @brief Mount a file system to the specified path.
*
* Mounts a file system node to a given base path.
* For example, if we have an EXT2 filesystem with a root node
* of ext2_root and we want to mount it to /, we would run
* vfs_mount("/", ext2_root); - or, if we have a procfs node,
* we could mount that to /dev/procfs. Individual files can also
* be mounted.
*
* Paths here must be absolute.
*/
void * vfs_mount(const char * path, fs_node_t * local_root) {
if (!fs_tree) {
debug_print(ERROR, "VFS hasn't been initialized, you can't mount things yet!");
return NULL;
}
if (!path || path[0] != '/') {
debug_print(ERROR, "Path must be absolute for mountpoint.");
return NULL;
}
spin_lock(tmp_vfs_lock);
local_root->refcount = -1;
tree_node_t * ret_val = NULL;
char * p = strdup(path);
char * i = p;
int path_len = strlen(p);
/* Chop the path up */
while (i < p + path_len) {
if (*i == PATH_SEPARATOR) {
*i = '\0';
}
i++;
}
/* Clean up */
p[path_len] = '\0';
i = p + 1;
/* Root */
tree_node_t * root_node = fs_tree->root;
if (*i == '\0') {
/* Special case, we're trying to set the root node */
struct vfs_entry * root = (struct vfs_entry *)root_node->value;
if (root->file) {
debug_print(WARNING, "Path %s already mounted, unmount before trying to mount something else.", path);
}
root->file = local_root;
/* We also keep a legacy shortcut around for that */
fs_root = local_root;
ret_val = root_node;
} else {
tree_node_t * node = root_node;
char * at = i;
while (1) {
if (at >= p + path_len) {
break;
}
int found = 0;
debug_print(NOTICE, "Searching for %s", at);
foreach(child, node->children) {
tree_node_t * tchild = (tree_node_t *)child->value;
struct vfs_entry * ent = (struct vfs_entry *)tchild->value;
if (!strcmp(ent->name, at)) {
found = 1;
node = tchild;
ret_val = node;
break;
}
}
if (!found) {
debug_print(NOTICE, "Did not find %s, making it.", at);
struct vfs_entry * ent = malloc(sizeof(struct vfs_entry));
ent->name = strdup(at);
ent->file = NULL;
ent->device = NULL;
ent->fs_type = NULL;
node = tree_node_insert_child(fs_tree, node, ent);
}
at = at + strlen(at) + 1;
}
struct vfs_entry * ent = (struct vfs_entry *)node->value;
if (ent->file) {
debug_print(WARNING, "Path %s already mounted, unmount before trying to mount something else.", path);
}
ent->file = local_root;
ret_val = node;
}
free(p);
spin_unlock(tmp_vfs_lock);
return ret_val;
}
void map_vfs_directory(const char * c) {
fs_node_t * f = vfs_mapper();
struct vfs_entry * e = vfs_mount((char*)c, f);
if (!strcmp(c, "/")) {
f->device = fs_tree->root;
} else {
f->device = e;
}
}
void debug_print_vfs_tree_node(tree_node_t * node, size_t height) {
/* End recursion on a blank entry */
if (!node) return;
char * tmp = malloc(512);
memset(tmp, 0, 512);
char * c = tmp;
/* Indent output */
for (uint32_t i = 0; i < height; ++i) {
c += snprintf(c, 3, " ");
}
/* Get the current process */
struct vfs_entry * fnode = (struct vfs_entry *)node->value;
/* Print the process name */
if (fnode->file) {
c += snprintf(c, 100, "%s → %s %p (%s, %s)", fnode->name, fnode->device, (void*)fnode->file, fnode->fs_type, fnode->file->name);
} else {
c += snprintf(c, 100, "%s → (empty)", fnode->name);
}
/* Linefeed */
debug_print(NOTICE, "%s", tmp);
free(tmp);
foreach(child, node->children) {
/* Recursively print the children */
debug_print_vfs_tree_node(child->value, height + 1);
}
}
void debug_print_vfs_tree(void) {
debug_print_vfs_tree_node(fs_tree->root, 0);
}
/**
* get_mount_point
*
*/
fs_node_t *get_mount_point(char * path, unsigned int path_depth, char **outpath, unsigned int * outdepth) {
size_t depth;
for (depth = 0; depth <= path_depth; ++depth) {
path += strlen(path) + 1;
}
/* Last available node */
fs_node_t * last = fs_root;
tree_node_t * node = fs_tree->root;
char * at = *outpath;
int _depth = 1;
int _tree_depth = 0;
while (1) {
if (at >= path) {
break;
}
int found = 0;
debug_print(INFO, "Searching for %s", at);
foreach(child, node->children) {
tree_node_t * tchild = (tree_node_t *)child->value;
struct vfs_entry * ent = (struct vfs_entry *)tchild->value;
if (!strcmp(ent->name, at)) {
found = 1;
node = tchild;
at = at + strlen(at) + 1;
if (ent->file) {
_tree_depth = _depth;
last = ent->file;
*outpath = at;
}
break;
}
}
if (!found) {
break;
}
_depth++;
}
*outdepth = _tree_depth;
if (last) {
fs_node_t * last_clone = malloc(sizeof(fs_node_t));
memcpy(last_clone, last, sizeof(fs_node_t));
last_clone->refcount = 0;
return last_clone;
}
return last;
}
fs_node_t *kopen_recur(const char *filename, uint64_t flags, uint64_t symlink_depth, char *relative_to) {
/* Simple sanity checks that we actually have a file system */
if (!filename) {
return NULL;
}
/* Canonicalize the (potentially relative) path... */
char *path = canonicalize_path(relative_to, filename);
/* And store the length once to save recalculations */
size_t path_len = strlen(path);
/* If strlen(path) == 1, then path = "/"; return root */
if (path_len == 1) {
/* Clone the root file system node */
fs_node_t *root_clone = malloc(sizeof(fs_node_t));
memcpy(root_clone, fs_root, sizeof(fs_node_t));
root_clone->refcount = 0;
/* Free the path */
free(path);
open_fs(root_clone, flags);
/* And return the clone */
return root_clone;
}
/* Otherwise, we need to break the path up and start searching */
char *path_offset = path;
uint64_t path_depth = 0;
while (path_offset < path + path_len) {
/* Find each PATH_SEPARATOR */
if (*path_offset == PATH_SEPARATOR) {
*path_offset = '\0';
path_depth++;
}
path_offset++;
}
/* Clean up */
path[path_len] = '\0';
path_offset = path + 1;
/*
* At this point, the path is tokenized and path_offset points
* to the first token (directory) and path_depth is the number
* of directories in the path
*/
/*
* Dig through the (real) tree to find the file
*/
unsigned int depth = 0;
/* Find the mountpoint for this file */
fs_node_t *node_ptr = get_mount_point(path, path_depth, &path_offset, &depth);
debug_print(INFO, "path_offset: %s", path_offset);
debug_print(INFO, "depth: %d", depth);
if (!node_ptr) return NULL;
do {
/*
* This test is a little complicated, but we basically always resolve symlinks in the
* of a path (like /home/symlink/file) even if O_NOFOLLOW and O_PATH are set. If we are
* on the leaf of the path then we will look at those flags and act accordingly
*/
if ((node_ptr->flags & FS_SYMLINK) &&
!((flags & O_NOFOLLOW) && (flags & O_PATH) && depth == path_depth)) {
/* This ensures we don't return a path when NOFOLLOW is requested but PATH
* isn't passed.
*/
debug_print(NOTICE, "resolving symlink at %s", node_ptr->name);
if ((flags & O_NOFOLLOW) && depth == path_depth - 1) {
/* TODO(gerow): should probably be setting errno from this */
debug_print(NOTICE, "Refusing to follow final entry for open with O_NOFOLLOW for %s.", node_ptr->name);
free((void *)path);
free(node_ptr);
return NULL;
}
if (symlink_depth >= MAX_SYMLINK_DEPTH) {
/* TODO(gerow): should probably be setting errno from this */
debug_print(WARNING, "Reached max symlink depth on %s.", node_ptr->name);
free((void *)path);
free(node_ptr);
return NULL;
}
/*
* This may actually be big enough that we wouldn't want to allocate it on
* the stack, especially considering this function is called recursively
*/
char symlink_buf[MAX_SYMLINK_SIZE];
int len = readlink_fs(node_ptr, symlink_buf, sizeof(symlink_buf));
if (len < 0) {
/* TODO(gerow): should probably be setting errno from this */
debug_print(WARNING, "Got error %d from symlink for %s.", len, node_ptr->name);
free((void *)path);
free(node_ptr);
return NULL;
}
if (symlink_buf[len] != '\0') {
/* TODO(gerow): should probably be setting errno from this */
debug_print(WARNING, "readlink for %s doesn't end in a null pointer. That's weird...", node_ptr->name);
free((void *)path);
free(node_ptr);
return NULL;
}
fs_node_t * old_node_ptr = node_ptr;
/* Rebuild our path up to this point. This is hella hacky. */
char * relpath = malloc(path_len + 1);
char * ptr = relpath;
memcpy(relpath, path, path_len + 1);
for (unsigned int i = 0; depth && i < depth-1; i++) {
while(*ptr != '\0') {
ptr++;
}
*ptr = PATH_SEPARATOR;
}
node_ptr = kopen_recur(symlink_buf, 0, symlink_depth + 1, relpath);
free(relpath);
free(old_node_ptr);
if (!node_ptr) {
/* Dangling symlink? */
debug_print(WARNING, "Failed to open symlink path %s. Perhaps it's a dangling symlink?", symlink_buf);
free((void *)path);
return NULL;
}
}
if (path_offset >= path+path_len) {
free(path);
open_fs(node_ptr, flags);
return node_ptr;
}
if (depth == path_depth) {
/* We found the file and are done, open the node */
open_fs(node_ptr, flags);
free((void *)path);
return node_ptr;
}
/* We are still searching... */
debug_print(INFO, "... Searching for %s", path_offset);
fs_node_t * node_next = finddir_fs(node_ptr, path_offset);
free(node_ptr); /* Always a clone or an unopened thing */
node_ptr = node_next;
/* Search the active directory for the requested directory */
if (!node_ptr) {
/* We failed to find the requested directory */
free((void *)path);
return NULL;
}
path_offset += strlen(path_offset) + 1;
++depth;
} while (depth < path_depth + 1);
debug_print(INFO, "- Not found.");
/* We failed to find the requested file, but our loop terminated. */
free((void *)path);
return NULL;
}
/**
* @brief Open a file by name.
*
* Explore the file system tree to find the appropriate node for
* for a given path. The path can be relative to the working directory
* and will be canonicalized by the kernel.
*
* @param filename Filename to open
* @param flags Flag bits for read/write mode.
* @returns A file system node element that the caller can free.
*/
fs_node_t *kopen(const char *filename, unsigned int flags) {
debug_print(NOTICE, "kopen(%s)", filename);
return kopen_recur(filename, flags, 0, (char *)(this_core->current_process->wd_name));
}