toaruos/apps/dbg.c

803 lines
19 KiB
C

/**
* @brief Debugger.
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2021 K. Lange
*/
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <getopt.h>
#include <signal.h>
#include <ctype.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <sys/signal.h>
#include <sys/signal_defs.h>
#include <sys/sysfunc.h>
#include <sys/utsname.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <syscall_nums.h>
#include <toaru/rline.h>
#include <toaru/hashmap.h>
#include <kernel/elf.h>
static char * last_command = NULL;
static char * binary_path = NULL;
static FILE * binary_obj = NULL;
static pid_t binary_pid = 0;
static int binary_is_child = 0;
#if defined(__x86_64__)
#include <kernel/arch/x86_64/regs.h>
static void dump_regs(struct regs * r) {
fprintf(stdout,
" $rip=0x%016lx\n"
" $rsi=0x%016lx,$rdi=0x%016lx,$rbp=0x%016lx,$rsp=0x%016lx\n"
" $rax=0x%016lx,$rbx=0x%016lx,$rcx=0x%016lx,$rdx=0x%016lx\n"
" $r8= 0x%016lx,$r9= 0x%016lx,$r10=0x%016lx,$r11=0x%016lx\n"
" $r12=0x%016lx,$r13=0x%016lx,$r14=0x%016lx,$r15=0x%016lx\n"
" cs=0x%016lx ss=0x%016lx rflags=0x%016lx int=0x%02lx err=0x%02lx\n",
r->rip,
r->rsi, r->rdi, r->rbp, r->rsp,
r->rax, r->rbx, r->rcx, r->rdx,
r->r8, r->r9, r->r10, r->r11,
r->r12, r->r13, r->r14, r->r15,
r->cs, r->ss, r->rflags, r->int_no, r->err_code
);
}
#define regs_ip(regs) ((regs)->rip)
#define regs_bp(regs) ((regs)->rbp)
#elif defined(__aarch64__)
#define regs _regs
#include <kernel/arch/aarch64/regs.h>
#undef regs
struct regs {
struct _regs gp;
uint64_t elr;
};
static void dump_regs(struct regs *r) {
#define reg(a,b) printf(" $x%02d=0x%016lx $x%02d=0x%016lx\n",a,r->gp.x ## a, b, r->gp.x ## b)
reg(0,1);
reg(2,3);
reg(4,5);
reg(6,7);
reg(8,9);
reg(10,11);
reg(12,13);
reg(14,15);
reg(16,17);
reg(18,19);
reg(20,21);
reg(22,23);
reg(24,25);
reg(26,27);
reg(28,29);
printf(" $x30=0x%016lx sp=0x%016lx\n", r->gp.x30, r->gp.user_sp);
printf(" elr=0x%016lx\n", r->elr);
#undef reg
#define regs_ip(regs) ((regs)->elr)
#define regs_bp(regs) ((regs)->gp.x29)
}
#else
# error "Unsupported arch"
#endif
#define M(e) [e] = #e
const char * signal_names[256] = {
M(SIGHUP),
M(SIGINT),
M(SIGQUIT),
M(SIGILL),
M(SIGTRAP),
M(SIGABRT),
M(SIGEMT),
M(SIGFPE),
M(SIGKILL),
M(SIGBUS),
M(SIGSEGV),
M(SIGSYS),
M(SIGPIPE),
M(SIGALRM),
M(SIGTERM),
M(SIGUSR1),
M(SIGUSR2),
M(SIGCHLD),
M(SIGPWR),
M(SIGWINCH),
M(SIGURG),
M(SIGPOLL),
M(SIGSTOP),
M(SIGTSTP),
M(SIGCONT),
M(SIGTTIN),
M(SIGTTOUT),
M(SIGVTALRM),
M(SIGPROF),
M(SIGXCPU),
M(SIGXFSZ),
M(SIGWAITING),
M(SIGDIAF),
M(SIGHATE),
M(SIGWINEVENT),
M(SIGCAT),
};
static int data_read_bytes(pid_t pid, uintptr_t addr, char * buf, size_t size) {
for (unsigned int i = 0; i < size; ++i) {
if (ptrace(PTRACE_PEEKDATA, pid, (void*)addr++, &buf[i])) {
return 1;
}
}
return 0;
}
static int data_read_int(pid_t pid, uintptr_t addr) {
int x;
data_read_bytes(pid, addr, (char*)&x, sizeof(int));
return x;
}
static uintptr_t data_read_ptr(pid_t pid, uintptr_t addr) {
uintptr_t x;
data_read_bytes(pid, addr, (char*)&x, sizeof(uintptr_t));
return x;
}
static void string_arg(pid_t pid, uintptr_t ptr, size_t maxsize) {
FILE * logfile = stdout;
if (ptr == 0) {
fprintf(logfile, "NULL");
return;
}
fprintf(logfile, "\"");
size_t size = 0;
uint8_t buf = 0;
do {
long result = ptrace(PTRACE_PEEKDATA, pid, (void*)ptr, &buf);
if (result != 0) break;
if (!buf) {
fprintf(logfile, "\"");
return;
}
if (buf == '\\') fprintf(logfile, "\\\\");
else if (buf == '"') fprintf(logfile, "\\\"");
else if (buf >= ' ' && buf < '~') fprintf(logfile, "%c", buf);
else if (buf == '\r') fprintf(logfile, "\\r");
else if (buf == '\n') fprintf(logfile, "\\n");
else fprintf(logfile, "\\x%02x", buf);
ptr++;
size++;
if (size > maxsize) break;
} while (buf);
fprintf(logfile, "\"...");
}
extern uintptr_t __ld_symbol_table(void);
extern uintptr_t __ld_objects_table(void);
static char * read_string(pid_t pid, uintptr_t ptr) {
if (!ptr) return strdup("(null)");
size_t len = 0;
uint8_t buf = 0;
while ((data_read_bytes(pid, ptr + len, (char*)&buf, 1), buf)) len++;
char * out = malloc(len + 1);
data_read_bytes(pid, ptr, out, len+1);
return out;
}
typedef struct elf_object {
FILE * file;
Elf64_Header header;
char * dyn_string_table;
size_t dyn_string_table_size;
Elf64_Sym * dyn_symbol_table;
size_t dyn_symbol_table_size;
Elf64_Dyn * dynamic;
Elf64_Word * dyn_hash;
void (*init)(void);
void (**init_array)(void);
size_t init_array_size;
uintptr_t base;
list_t * dependencies;
int loaded;
} elf_t;
static int find_symbol(pid_t pid, uintptr_t addr_in, char ** name, uintptr_t *addr_out, char ** objname) {
intptr_t current_max = INTPTR_MAX;
uintptr_t current_addr = NULL;
uintptr_t current_xname = NULL;
char * current_name = NULL;
char * current_obj = NULL;
uintptr_t best_base = 0;
/* Can we cheat and peek at ld.so? */
uintptr_t their_symbol_table = data_read_ptr(pid, __ld_symbol_table());
if (their_symbol_table) {
hashmap_t map;
data_read_bytes(pid, their_symbol_table, (char*)&map, sizeof(hashmap_t));
/* Cool, now let's look at every entry... */
for (size_t i = 0; i < map.size; ++i) {
uintptr_t ptr;
hashmap_entry_t entry;
data_read_bytes(pid, (uintptr_t)map.entries + sizeof(uintptr_t) * i, (char*)&ptr, sizeof(uintptr_t));
int j = 0;
while (ptr) {
data_read_bytes(pid, ptr, (char*)&entry, sizeof(hashmap_entry_t));
if (entry.value && addr_in >= (uintptr_t)entry.value) {
intptr_t x = addr_in - (uintptr_t)entry.value;
if (x < current_max) {
current_max = x;
current_addr = (uintptr_t)entry.value;
current_xname = (uintptr_t)entry.key;
}
}
ptr = (uintptr_t)entry.next;
j++;
}
}
if (current_xname) {
current_name = read_string(pid, current_xname);
}
}
if (addr_in < 0x40000000) {
current_obj = strdup("ld.so");
}
/* Figure out where this object is in the objects map */
uintptr_t their_objects_table = data_read_ptr(pid, __ld_objects_table());
if (!current_obj && their_objects_table) {
hashmap_t map;
data_read_bytes(pid, their_objects_table, (char*)&map, sizeof(hashmap_t));
intptr_t cmax = INTPTR_MAX;
uintptr_t best_name = 0;
for (size_t i = 0; i < map.size; ++i) {
uintptr_t ptr;
hashmap_entry_t entry;
data_read_bytes(pid, (uintptr_t)map.entries + sizeof(uintptr_t) * i, (char*)&ptr, sizeof(uintptr_t));
while (ptr) {
data_read_bytes(pid, ptr, (char*)&entry, sizeof(hashmap_entry_t));
if (entry.value) {
elf_t obj;
data_read_bytes(pid, (uintptr_t)entry.value, (char*)&obj, sizeof(elf_t));
if (addr_in >= obj.base) {
intptr_t x = addr_in - (uintptr_t)obj.base;
if (x < cmax) {
cmax = x;
best_name = (uintptr_t)entry.key;
best_base = obj.base;
}
}
}
ptr = (uintptr_t)entry.next;
}
}
if (best_name) {
current_obj = read_string(pid, best_name);
}
}
FILE * f = binary_obj;
if (current_obj) {
/* Try to open that */
struct stat stat_buf;
char path[1024];
sprintf(path, "/lib/%s", current_obj);
if (stat(path, &stat_buf)) {
sprintf(path, "/usr/lib/%s", current_obj);
if (stat(path, &stat_buf)) goto _bail;
}
f = fopen(path, "r");
} else {
_bail:
current_obj = strdup(binary_path);
best_base = 0;
}
fseek(f, 0, SEEK_SET);
Elf64_Header header;
fread(&header, sizeof(Elf64_Header), 1, f);
for (unsigned int i = 0; i < header.e_shnum; ++i) {
fseek(f, header.e_shoff + header.e_shentsize * i, SEEK_SET);
Elf64_Shdr sectionHeader;
fread(&sectionHeader, sizeof(Elf64_Shdr), 1, f);
switch (sectionHeader.sh_type) {
case SHT_SYMTAB:
case SHT_DYNSYM: {
/* Try to get the actual one if possible */
Elf64_Sym * symtab = malloc(sectionHeader.sh_size);
if (sectionHeader.sh_addr > 0x40000000) {
data_read_bytes(pid, sectionHeader.sh_addr, (char*)symtab, sectionHeader.sh_size);
} else {
fseek(f, sectionHeader.sh_offset, SEEK_SET);
fread(symtab, sectionHeader.sh_size, 1, f);
}
Elf64_Shdr shdr_strtab;
fseek(f, header.e_shoff + header.e_shentsize * sectionHeader.sh_link, SEEK_SET);
fread(&shdr_strtab, sizeof(Elf64_Shdr), 1, f);
char * strtab = malloc(shdr_strtab.sh_size);
fseek(f, shdr_strtab.sh_offset, SEEK_SET);
fread(strtab, shdr_strtab.sh_size, 1, f);
for (unsigned int i = 0; i < sectionHeader.sh_size / sizeof(Elf64_Sym); ++i) {
if (!symtab[i].st_value) continue;
if ((symtab[i].st_info & 0xF) == STT_SECTION) continue;
if ((symtab[i].st_info & 0xF) == STT_NOTYPE) continue;
if (addr_in >= ((uintptr_t)symtab[i].st_value + best_base)) {
intptr_t x = addr_in - ((uintptr_t)symtab[i].st_value + best_base);
if (x < current_max) {
if (current_name) free(current_name);
current_max = x;
current_addr = symtab[i].st_value + best_base;
current_name = strdup(strtab + symtab[i].st_name);
}
}
}
free(strtab);
free(symtab);
}
break;
}
}
*addr_out = current_addr;
*name = current_name;
*objname = current_obj;
if (current_name) return 1;
if (f != binary_obj) fclose(f);
return 0;
}
static void show_libs(pid_t pid) {
hashmap_t map;
uintptr_t their_objects_table = data_read_ptr(pid, __ld_objects_table());
data_read_bytes(pid, their_objects_table, (char*)&map, sizeof(hashmap_t));
for (size_t i = 0; i < map.size; ++i) {
uintptr_t ptr;
hashmap_entry_t entry;
data_read_bytes(pid, (uintptr_t)map.entries + sizeof(uintptr_t) * i, (char*)&ptr, sizeof(uintptr_t));
while (ptr) {
data_read_bytes(pid, ptr, (char*)&entry, sizeof(hashmap_entry_t));
if (entry.value) {
elf_t obj;
data_read_bytes(pid, (uintptr_t)entry.value, (char*)&obj, sizeof(elf_t));
char * s = read_string(pid, (uintptr_t)entry.key);
fprintf(stderr, "%s @ %#zx\n", s, (uintptr_t)obj.base);
}
ptr = (uintptr_t)entry.next;
}
}
}
static void attempt_backtrace(pid_t pid, struct regs * regs) {
/* We already printed the top, now let's try to dig down */
uintptr_t ip = regs_ip(regs);
uintptr_t bp = regs_bp(regs);
int depth = 0;
int max_depth = 20;
while (bp && ip && depth < max_depth && ip < 0xFFFfff0000000000UL) {
char * name = NULL;
char * objname = NULL;
uintptr_t addr = 0;
if (find_symbol(pid, ip - 1, &name, &addr, &objname)) {
fprintf(stderr, "<0x%016zx> %s+%#zx in %s\n",
ip,
name, ip - addr, objname);
free(name);
free(objname);
}
ip = data_read_ptr(pid, bp + sizeof(uintptr_t));
bp = data_read_ptr(pid, bp);
depth++;
}
}
static int imatch(const char * a, const char * b) {
do {
if (!*a && !*b) return 1;
if (tolower(*a) != tolower(*b)) return 0;
a++;
b++;
} while (1);
}
static int signal_from_string(const char * str) {
if (isdigit(*str)) {
return strtoul(str,NULL,0);
} else if (str[0] == 'S' && str[1] == 'I' && str[2] == 'G') {
for (int i = 0; i < 256; ++i) {
if (signal_names[i] && imatch(signal_names[i], str)) return i;
}
return -1;
} else {
for (int i = 0; i < 256; ++i) {
if (signal_names[i] && imatch(signal_names[i]+3, str)) return i;
}
return -1;
}
return -1;
}
static void show_commandline(pid_t pid, int status, struct regs * regs) {
fprintf(stderr, "[Process %d, ip=%#zx]\n",
pid, regs_ip(regs));
/* Try to figure out what symbol that is */
char * name = NULL;
char * objname = NULL;
uintptr_t addr = 0;
if (find_symbol(pid, regs_ip(regs), &name, &addr, &objname)) {
fprintf(stderr, " %s+%zx in %s\n",
name, regs_ip(regs) - addr, objname);
free(name);
free(objname);
}
while (1) {
char buf[4096] = {0};
rline_exit_string = "";
rline_exp_set_prompts("(dbg) ", "", 6, 0);
rline_exp_set_syntax("dbg");
rline_exp_set_tab_complete_func(NULL); /* TODO */
if (rline(buf, 4096) == 0) goto _exitDebugger;
char *nl = strstr(buf, "\n");
if (nl) *nl = '\0';
if (!strlen(buf)) {
if (last_command) {
strcpy(buf, last_command);
} else {
continue;
}
} else {
rline_history_insert(strdup(buf));
rline_scroll = 0;
if (last_command) free(last_command);
last_command = strdup(buf);
}
/* Tokenize just the first command */
char * arg = NULL;
char * sp = strstr(buf, " ");
if (sp) {
*sp = '\0';
arg = sp + 1;
}
if (!strcmp(buf, "show")) {
if (!arg) {
fprintf(stderr, "Things that can be shown:\n");
fprintf(stderr, " regs\n");
fprintf(stderr, " libs\n");
continue;
}
if (!strcmp(arg, "regs")) {
dump_regs(regs);
} else if (!strcmp(arg, "libs")) {
show_libs(pid);
} else {
fprintf(stderr, "Don't know how to show '%s'\n", arg);
}
} else if (!strcmp(buf, "bt") || !strcmp(buf, "backtrace")) {
attempt_backtrace(pid, regs);
} else if (!strcmp(buf, "continue") || !strcmp(buf,"c")) {
int signum = WSTOPSIG(status);
if (signum == SIGINT) signum = 0;
ptrace(PTRACE_CONT, pid, NULL, (void*)(uintptr_t)signum);
return;
} else if (!strcmp(buf, "signal")) {
if (!arg) {
fprintf(stderr, "'signal' needs an argument\n");
continue;
}
int signum = signal_from_string(arg);
if (signum == -1) {
fprintf(stderr, "'%s' is not a recognized signal\n", arg);
continue;
}
ptrace(PTRACE_CONT, pid, NULL, (void*)(uintptr_t)signum);
return;
} else if (!strcmp(buf, "step") || !strcmp(buf,"s")) {
int signum = WSTOPSIG(status);
if (signum == SIGINT) signum = 0;
ptrace(PTRACE_SINGLESTEP, pid, NULL, (void*)(uintptr_t)signum);
return;
} else if (!strcmp(buf, "poke")) {
char * addr = arg;
char * data = strstr(addr, " ");
if (!data) {
fprintf(stderr, "usage: poke addr byte\n");
continue;
}
*data = '\0'; data++;
uintptr_t addr_ = strtoul(addr, NULL, 0);
uintptr_t data_ = strtoul(data, NULL, 0);
if (ptrace(PTRACE_POKEDATA, pid, (void*)addr_, (void*)&data_) != 0) {
fprintf(stderr, "poke: %s\n", strerror(errno));
continue;
}
} else if (!strcmp(buf, "print") || !strcmp(buf,"p")) {
char * fmt = arg;
char * sp = strstr(arg, " ");
if (!sp) {
fprintf(stderr, "usage: print fmt addr\n");
continue;
}
*sp = '\0'; sp++;
uintptr_t addr = strtoul(sp,NULL,0);
/* Parse any leading numbers */
int count = 1;
if (*fmt >= '1' && *fmt <= '9') {
count = (*fmt - '0');
fmt++;
while (*fmt >= '0' && *fmt <= '9') {
count *= 10;
count += (*fmt - '0');
fmt++;
}
}
/* Parse the format */
for (int i = 0; i < count; ++i) {
if (!strcmp(fmt, "x")) {
uint8_t buf[1];
data_read_bytes(pid, addr, (char*)buf, 1);
printf("%02x", buf[0]);
addr += 1;
} else if (!strcmp(fmt, "i")) {
printf("%d", data_read_int(pid,addr));
addr += sizeof(int);
} else if (!strcmp(fmt, "l")) {
printf("%ld", (intptr_t)data_read_ptr(pid,addr));
addr += sizeof(long);
} else if (!strcmp(fmt, "p")) {
printf("%#zx", data_read_ptr(pid,addr));
addr += sizeof(uintptr_t);
} else if (!strcmp(fmt, "s")) {
string_arg(pid,addr,count == 1 ? 30 : count);
break;
} else {
printf("print: invalid format string");
break;
}
if (i + 1 < count) {
printf(" ");
}
}
printf("\n");
} else if (!strcmp(buf, "help")) {
printf("commands:\n"
" show (regs, libs)\n"
" backtrace\n"
" continue\n"
" signal signum\n"
" step\n"
" poke addr byte\n"
" print fmt addr\n");
continue;
} else {
fprintf(stderr, "dbg: unrecognized command '%s'\n", buf);
continue;
}
}
_exitDebugger:
if (binary_is_child) {
fprintf(stderr, "Terminating child process '%d'.\n", pid);
ptrace(PTRACE_DETACH, pid, NULL, (void*)(uintptr_t)SIGKILL);
}
exit(0);
}
static int usage(char * argv[]) {
#define T_I "\033[3m"
#define T_O "\033[0m"
fprintf(stderr, "usage: %s command...\n"
" -h " T_I "Show this help text." T_O "\n",
argv[0]);
return 1;
}
#define DEFAULT_PATH "/bin:/usr/bin"
static char * find_binary(const char * file) {
if (file && (!strstr(file, "/"))) {
char * path = getenv("PATH");
if (!path) {
path = DEFAULT_PATH;
}
char * xpath = strdup(path);
char * p, * last;
for ((p = strtok_r(xpath, ":", &last)); p; p = strtok_r(NULL, ":", &last)) {
int r;
struct stat stat_buf;
char * exe = malloc(strlen(p) + strlen(file) + 2);
strcpy(exe, p);
strcat(exe, "/");
strcat(exe, file);
r = stat(exe, &stat_buf);
if (r != 0) {
continue;
}
if (!(stat_buf.st_mode & 0111)) {
continue;
}
free(xpath);
return exe;
}
free(xpath);
return NULL;
} else if (file) {
return strdup(file);
}
return NULL;
}
static char * sig_to_str(int signum) {
static char _buf[100];
if (signum >= 0 && signum <= 255) {
char * maybe = (char*)signal_names[signum];
if (maybe) {
return maybe;
}
}
sprintf(_buf, "%d", signum);
return _buf;
}
static void pass_sig(int sig) {
kill(binary_pid, sig);
signal(SIGINT, pass_sig);
}
int main(int argc, char * argv[]) {
pid_t target_pid = 0;
int opt;
while ((opt = getopt(argc, argv, "o:p:h")) != -1) {
switch (opt) {
case 'p':
target_pid = atoi(optarg);
break;
case 'h':
return (usage(argv), 0);
case '?':
return usage(argv);
}
}
if (optind == argc) {
return usage(argv);
}
/* TODO find argv[optind] */
/* TODO load symbols from it, and from its dependencies... with offsets... from ld.so... */
binary_path = find_binary(argv[optind]);
if (!binary_path) {
fprintf(stderr, "%s: %s: No such file or not an executable.\n",
argv[0], argv[optind]);
return 1;
}
binary_obj = fopen(binary_path, "r");
if (!binary_obj) {
fprintf(stderr, "%s: %s: %s\n",
argv[0], argv[optind], strerror(errno));
return 1;
}
/* Attempt to load symbol information... */
if (target_pid) {
binary_pid = target_pid;
if (ptrace(PTRACE_ATTACH, binary_pid, NULL, NULL) < 0) {
fprintf(stderr, "%s: ptrace: %s\n", argv[0], strerror(errno));
return 1;
}
signal(SIGINT, pass_sig);
} else {
binary_is_child = 1;
binary_pid = fork();
if (!binary_pid) {
if (ptrace(PTRACE_TRACEME, 0, NULL, NULL) < 0) {
fprintf(stderr, "%s: ptrace: %s\n", argv[0], strerror(errno));
return 1;
}
execv(binary_path, &argv[optind]);
return 1;
}
signal(SIGINT, SIG_IGN);
}
while (1) {
int status = 0;
pid_t res = waitpid(binary_pid, &status, WSTOPPED);
if (res == 0) continue;
if (res < 0) {
if (errno == EINTR) continue;
fprintf(stderr, "%s: waitpid: %s\n", argv[0], strerror(errno));
} else {
if (WIFSTOPPED(status)) {
if (WSTOPSIG(status) == SIGTRAP) {
/* Don't care about TRAP right now */
int event = (status >> 16) & 0xFF;
switch (event) {
case PTRACE_EVENT_SINGLESTEP: {
struct regs regs;
ptrace(PTRACE_GETREGS, res, NULL, &regs);
show_commandline(res, status, &regs);
}
break;
default:
//ptrace(PTRACE_SIGNALS_ONLY_PLZ, p, NULL, NULL);
ptrace(PTRACE_CONT, res, NULL, NULL);
break;
}
} else {
printf("Program received signal %s.\n", sig_to_str(WSTOPSIG(status)));
struct regs regs;
ptrace(PTRACE_GETREGS, res, NULL, &regs);
show_commandline(res, status, &regs);
}
} else if (WIFSIGNALED(status)) {
fprintf(stderr, "Process %d was killed by %s.\n", res, signal_names[WTERMSIG(status)]);
return 0;
} else if (WIFEXITED(status)) {
fprintf(stderr, "Process %d exited normally.\n", res);
return 0;
} else {
fprintf(stderr, "Unknown state?\n");
}
}
}
return 0;
}