toaruos/boot/moremultiboot.h
2018-12-25 15:20:55 +09:00

921 lines
24 KiB
C

static mboot_mod_t modules_mboot[sizeof(modules)/sizeof(*modules)] = {
{0,0,0,1}
};
static struct multiboot multiboot_header = {
/* flags; */ MULTIBOOT_FLAG_CMDLINE | MULTIBOOT_FLAG_MODS | MULTIBOOT_FLAG_MEM | MULTIBOOT_FLAG_MMAP | MULTIBOOT_FLAG_LOADER,
/* mem_lower; */ 0x100000,
/* mem_upper; */ 0x640000,
/* boot_device; */ 0,
/* cmdline; */ 0,
/* mods_count; */ sizeof(modules)/sizeof(*modules),
/* mods_addr; */ 0,
/* num; */ 0,
/* size; */ 0,
/* addr; */ 0,
/* shndx; */ 0,
/* mmap_length; */ 0,
/* mmap_addr; */ 0,
/* drives_length; */ 0,
/* drives_addr; */ 0,
/* config_table; */ 0,
/* boot_loader_name; */ 0,
/* apm_table; */ 0,
/* vbe_control_info; */ 0,
/* vbe_mode_info; */ 0,
/* vbe_mode; */ 0,
/* vbe_interface_seg; */ 0,
/* vbe_interface_off; */ 0,
/* vbe_interface_len; */ 0,
};
static long ramdisk_off = 1;
static long ramdisk_len = 1;
int _eax = 1;
int _ebx = 1;
int _xmain = 1;
struct mmap_entry {
uint64_t base;
uint64_t len;
uint32_t type;
uint32_t reserved;
};
extern unsigned short mmap_ent;
extern unsigned short lower_mem;
char * final_offset = NULL;
extern char do_the_nasty[];
static int strlen(char * s) {
int out = 0;
while (*s) {
s++;
out++;
}
return out;
}
#ifdef EFI_PLATFORM
static EFI_GUID efi_graphics_output_protocol_guid =
{0x9042a9de,0x23dc,0x4a38, {0x96,0xfb,0x7a,0xde,0xd0,0x80,0x51,0x6a}};
#endif
static void move_kernel(void) {
clear();
print("Relocating kernel...\n");
Elf32_Header * header = (Elf32_Header *)KERNEL_LOAD_START;
if (header->e_ident[0] != ELFMAG0 ||
header->e_ident[1] != ELFMAG1 ||
header->e_ident[2] != ELFMAG2 ||
header->e_ident[3] != ELFMAG3) {
print("Kernel is invalid?\n");
}
uintptr_t entry = (uintptr_t)header->e_entry;
for (uintptr_t x = 0; x < (uint32_t)header->e_phentsize * header->e_phnum; x += header->e_phentsize) {
Elf32_Phdr * phdr = (Elf32_Phdr *)((uint8_t*)KERNEL_LOAD_START + header->e_phoff + x);
if (phdr->p_type == PT_LOAD) {
//read_fs(file, phdr->p_offset, phdr->p_filesz, (uint8_t *)phdr->p_vaddr);
print("Loading a Phdr... ");
print_hex(phdr->p_vaddr);
print(" ");
print_hex(phdr->p_offset);
print(" ");
print_hex(phdr->p_filesz);
print("\n");
#ifdef EFI_PLATFORM
EFI_PHYSICAL_ADDRESS addr = phdr->p_vaddr;
uefi_call_wrapper(ST->BootServices->AllocatePages, 3, AllocateAddress, 0x80000000, phdr->p_memsz / 4096 + 1, &addr);
#endif
memcpy((uint8_t*)(uintptr_t)phdr->p_vaddr, (uint8_t*)KERNEL_LOAD_START + phdr->p_offset, phdr->p_filesz);
long r = phdr->p_filesz;
while (r < phdr->p_memsz) {
*(char *)(phdr->p_vaddr + r) = 0;
r++;
}
}
}
print("Setting up memory map...\n");
#ifdef EFI_PLATFORM
mboot_memmap_t * mmap = (void*)KERNEL_LOAD_START;
memset((void*)KERNEL_LOAD_START, 0x00, 1024);
multiboot_header.mmap_addr = (uintptr_t)mmap;
EFI_STATUS e;
UINTN mapSize = 0, mapKey, descriptorSize;
UINT32 descriptorVersion;
e = uefi_call_wrapper(ST->BootServices->GetMemoryMap, 5, &mapSize, NULL, &mapKey, &descriptorSize, NULL);
print_("Memory map size is "); print_hex_(mapSize); print_("\n");
EFI_MEMORY_DESCRIPTOR * efi_memory = (void*)(final_offset);
final_offset += mapSize;
while ((uintptr_t)final_offset & 0x3ff) final_offset++;
e = uefi_call_wrapper(ST->BootServices->GetMemoryMap, 5, &mapSize, efi_memory, &mapKey, &descriptorSize, NULL);
if (EFI_ERROR(e)) {
print_("EFI error.\n");
}
uint64_t upper_mem = 0;
int descriptors = mapSize / descriptorSize;
for (int i = 0; i < descriptors; ++i) {
EFI_MEMORY_DESCRIPTOR * d = efi_memory;
mmap->size = sizeof(uint64_t) * 2 + sizeof(uintptr_t);
mmap->base_addr = d->PhysicalStart;
mmap->length = d->NumberOfPages * 4096;
switch (d->Type) {
case EfiConventionalMemory:
case EfiLoaderCode:
case EfiLoaderData:
case EfiBootServicesCode:
case EfiBootServicesData:
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiACPIReclaimMemory:
mmap->type = 1;
break;
case EfiReservedMemoryType:
case EfiUnusableMemory:
case EfiMemoryMappedIO:
case EfiMemoryMappedIOPortSpace:
case EfiPalCode:
case EfiACPIMemoryNVS:
default:
mmap->type = 2;
break;
}
if (mmap->type == 1 && mmap->base_addr >= 0x100000) {
upper_mem += mmap->length;
}
mmap = (mboot_memmap_t *) ((uintptr_t)mmap + mmap->size + sizeof(uintptr_t));
efi_memory = (EFI_MEMORY_DESCRIPTOR *)((char *)efi_memory + descriptorSize);
}
multiboot_header.mem_lower = 1024;
multiboot_header.mem_upper = upper_mem / 1024;
/* Set up framebuffer */
if (_efi_do_mode_set) {
UINTN count;
EFI_HANDLE * handles;
EFI_GRAPHICS_OUTPUT_PROTOCOL * gfx;
EFI_STATUS status;
status = uefi_call_wrapper(ST->BootServices->LocateHandleBuffer,
5, ByProtocol, &efi_graphics_output_protocol_guid, NULL, &count, &handles);
if (EFI_ERROR(status)) {
print_("Error getting graphics device handle.\n");
while (1) {};
}
status = uefi_call_wrapper(ST->BootServices->HandleProtocol,
3, handles[0], &efi_graphics_output_protocol_guid, (void **)&gfx);
if (EFI_ERROR(status)) {
print_("Error getting graphics device.\n");
while (1) {};
}
#if 0
print_("Attempting to set a sane mode (32bit color, etc.)\n");
print_("There are 0x"); print_hex_(gfx->Mode->MaxMode); print_(" modes available.\n");
print_("This is mode 0x"); print_hex_(gfx->Mode->Mode); print_(".\n");
#endif
int biggest = gfx->Mode->Mode;
int big_width = 0;
int big_height = 0;
clear_();
for (int i = 0; i < gfx->Mode->MaxMode; ++i) {
EFI_STATUS status;
UINTN size;
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION * info;
status = uefi_call_wrapper(gfx->QueryMode,
4, gfx, i, &size, &info);
if (EFI_ERROR(status)) {
print_("Error getting gfx mode 0x"); print_hex_(i); print_("\n");
} else {
print_("Mode "); print_int_(i); print_(" "); print_int_(info->HorizontalResolution);
print_("x"); print_int_(info->VerticalResolution); print_(" ");
print_int_(info->PixelFormat); print_("\n");
if (_efi_do_mode_set == 1) {
if (info->PixelFormat == 1 && info->HorizontalResolution >= big_width) {
biggest = i;
big_width = info->HorizontalResolution;
}
} else if (_efi_do_mode_set == 2) {
if (info->PixelFormat == 1 && info->HorizontalResolution == 1024 &&
info->VerticalResolution == 768) {
biggest = i;
break;
}
} else if (_efi_do_mode_set == 3) {
if (info->PixelFormat == 1 && info->HorizontalResolution == 1920 &&
info->VerticalResolution == 1080) {
biggest = i;
break;
}
} else if (_efi_do_mode_set == 4) {
while (1) {
print_("y/n? ");
int resp = read_scancode();
if (resp == 'y') {
print_("y\n");
biggest = i;
goto done_video;
} else if (resp == 'n') {
print_("n\n");
break;
}
print_("?\n");
}
}
}
}
done_video:
print_("Selected video mode was "); print_int_(biggest); print_("\n");
uefi_call_wrapper(gfx->SetMode, 2, gfx, biggest);
uint32_t high = gfx->Mode->FrameBufferBase >> 32;
uint32_t low = gfx->Mode->FrameBufferBase & 0xFFFFFFFF;
print_("Framebuffer address is 0x"); print_hex_(high); print_hex_(low); print_("\n");
if (high) {
clear_();
print_("Framebuffer is outside of 32-bit memory range.\n");
print_("EFI mode setting is not available - and graphics may not work in general.\n");
while (1) {};
}
multiboot_header.flags |= (1 << 12); /* Enable framebuffer flag */
multiboot_header.framebuffer_addr = low;
multiboot_header.framebuffer_width = gfx->Mode->Info->HorizontalResolution;
multiboot_header.framebuffer_height = gfx->Mode->Info->VerticalResolution;
multiboot_header.framebuffer_pitch = gfx->Mode->Info->PixelsPerScanLine * 4;
print_("Mode information passed to multiboot:\n");
print_(" Address: 0x"); print_hex_(multiboot_header.framebuffer_addr); print_("\n");
print_(" Width: "); print_int_(multiboot_header.framebuffer_width); print_("\n");
print_(" Height: "); print_int_(multiboot_header.framebuffer_height); print_("\n");
print_("\n");
}
memcpy(final_offset, cmdline, strlen(cmdline)+1);
multiboot_header.cmdline = (uintptr_t)final_offset;
final_offset += strlen(cmdline)+1;
memcpy(final_offset, VERSION_TEXT, strlen(VERSION_TEXT)+1);
multiboot_header.boot_loader_name = (uintptr_t)final_offset;
final_offset += strlen(VERSION_TEXT)+1;
while ((uintptr_t)final_offset & 0x3ff) final_offset++;
multiboot_header.mods_addr = (uintptr_t)final_offset;
memcpy(final_offset, &modules_mboot, sizeof(modules_mboot));
final_offset += sizeof(modules_mboot);
while ((uintptr_t)final_offset & 0x3ff) final_offset++;
memcpy(final_offset, &multiboot_header, sizeof(multiboot_header));
_ebx = (uintptr_t)final_offset;
print("Jumping to main, good luck.\n");
#else
print_hex(mmap_ent);
print("\n");
memset((void*)KERNEL_LOAD_START, 0x00, 1024);
mboot_memmap_t * mmap = (void*)KERNEL_LOAD_START;
multiboot_header.mmap_addr = (uintptr_t)mmap;
multiboot_header.mods_addr = (uintptr_t)&modules_mboot;
multiboot_header.boot_loader_name = (uintptr_t)VERSION_TEXT;
struct mmap_entry * e820 = (void*)0x5000;
uint64_t upper_mem = 0;
for (int i = 0; i < mmap_ent; ++i) {
print("entry "); print_hex(i); print("\n");
print("base: "); print_hex((uint32_t)e820[i].base); print("\n");
print("type: "); print_hex(e820[i].type); print("\n");
mmap->size = sizeof(uint64_t) * 2 + sizeof(uintptr_t);
mmap->base_addr = e820[i].base;
mmap->length = e820[i].len;
mmap->type = e820[i].type;
if (mmap->type == 1 && mmap->base_addr >= 0x100000) {
upper_mem += mmap->length;
}
mmap = (mboot_memmap_t *) ((uintptr_t)mmap + mmap->size + sizeof(uintptr_t));
}
print("lower "); print_hex(lower_mem); print("KB\n");
multiboot_header.mem_lower = 1024;
print("upper ");
print_hex(upper_mem >> 32);
print_hex(upper_mem);
print("\n");
multiboot_header.mem_upper = upper_mem / 1024;
_ebx = (unsigned int)&multiboot_header;
#endif
_eax = MULTIBOOT_EAX_MAGIC;
_xmain = entry;
#ifdef EFI_PLATFORM
print_("\nExiting boot services and jumping to ");
print_hex_(_xmain);
print_(" with mboot_mag=");
print_hex_(_eax);
print_(" and mboot_ptr=");
print_hex_(_ebx);
print_("...\n");
#if defined(__x86_64__)
print_("&_xmain = "); print_hex_(((uintptr_t)&_xmain) >> 32); print_hex_((uint32_t)(uintptr_t)&_xmain); print_("\n");
#endif
if (1) {
EFI_STATUS e;
UINTN mapSize = 0, mapKey, descriptorSize;
UINT32 descriptorVersion;
uefi_call_wrapper(ST->BootServices->GetMemoryMap, 5, &mapSize, NULL, &mapKey, &descriptorSize, NULL);
e = uefi_call_wrapper(ST->BootServices->ExitBootServices, 2, ImageHandleIn, mapKey);
if (e != EFI_SUCCESS) {
print_("Exit services failed. \n");
print_hex_(e);
}
}
#endif
#if defined(__x86_64__)
uint64_t foobar = ((uint32_t)(uintptr_t)&do_the_nasty) | (0x10L << 32L);
uint32_t * foo = (uint32_t *)0x7c00;
foo[0] = _eax;
foo[1] = _ebx;
foo[2] = _xmain;
__asm__ __volatile__ (
"push %0\n"
"retf\n"
: : "g"(foobar));
#else
__asm__ __volatile__ (
"mov %1,%%eax \n"
"mov %2,%%ebx \n"
"jmp *%0" : : "g"(_xmain), "g"(_eax), "g"(_ebx) : "eax", "ebx"
);
#endif
}
#if defined(__x86_64__)
__asm__ (
"do_the_nasty:\n"
"cli\n"
//"mov 0x08, %ax\n"
//"mov %ax, %ds\n"
//"mov %ax, %es\n"
//"mov %ax, %fs\n"
//"mov %ax, %gs\n"
//"mov %ax, %ss\n"
".code32\n"
"mov %cr0, %eax\n"
"and $0x7FFeFFFF, %eax\n"
"mov %eax, %cr0\n"
// Paging is disabled
"mov $0xc0000080, %ecx\n"
"rdmsr\n"
"and $0xfffffeff, %eax\n"
"wrmsr\n"
"mov $0x640, %eax\n"
"mov %eax, %cr4\n"
"mov 0x7c00, %eax\n"
"mov 0x7c04, %ebx\n"
"mov 0x7c08, %ecx\n"
"jmp *%ecx\n"
"target: jmp target\n"
".code64\n"
);
#endif
#ifndef EFI_PLATFORM
static void do_it(struct ata_device * _device) {
device = _device;
if (device->atapi_sector_size != 2048) {
print_hex(device->atapi_sector_size);
print("\n - bad sector size\n");
return;
}
for (int i = 0x10; i < 0x15; ++i) {
ata_device_read_sector_atapi(device, i, (uint8_t *)root);
switch (root->type) {
case 1:
root_sector = i;
goto done;
case 0xFF:
return;
}
}
return;
done:
restore_root();
if (navigate(kernel_path)) {
print("Found kernel.\n");
print_hex(dir_entry->extent_start_LSB); print(" ");
print_hex(dir_entry->extent_length_LSB); print("\n");
long offset = 0;
for (int i = dir_entry->extent_start_LSB; i < dir_entry->extent_start_LSB + dir_entry->extent_length_LSB / 2048 + 1; ++i, offset += 2048) {
ata_device_read_sector_atapi(device, i, (uint8_t *)KERNEL_LOAD_START + offset);
}
while (offset % 4096) offset++;
restore_root();
if (navigate(module_dir)) {
memcpy(mod_dir, dir_entry, sizeof(iso_9660_directory_entry_t));
print("Scanning modules...\n");
char ** c = modules;
int j = 0;
while (*c) {
print("load "); print(*c); print("\n");
if (!navigate(*c)) {
print("Failed to locate module! [");
print(*c);
multiboot_header.mods_count--;
print("]\n");
} else {
modules_mboot[j].mod_start = KERNEL_LOAD_START + offset;
modules_mboot[j].mod_end = KERNEL_LOAD_START + offset + dir_entry->extent_length_LSB;
for (int i = dir_entry->extent_start_LSB; i < dir_entry->extent_start_LSB + dir_entry->extent_length_LSB / 2048 + 1; ++i, offset += 2048) {
ata_device_read_sector_atapi(device, i, (uint8_t *)KERNEL_LOAD_START + offset);
}
while (offset % 4096) offset++;
j++;
}
c++;
restore_mod();
}
print("Done.\n");
restore_root();
if (navigate(ramdisk_path)) {
//clear_();
ramdisk_off = KERNEL_LOAD_START + offset;
ramdisk_len = dir_entry->extent_length_LSB;
modules_mboot[multiboot_header.mods_count-1].mod_start = ramdisk_off;
modules_mboot[multiboot_header.mods_count-1].mod_end = ramdisk_off + ramdisk_len;
print_("Loading ramdisk");
int i = dir_entry->extent_start_LSB;
int sectors = dir_entry->extent_length_LSB / 2048 + 1;
#define SECTORS 512
while (sectors >= SECTORS) {
print_(".");
ata_device_read_sectors_atapi(device, i, (uint8_t *)KERNEL_LOAD_START + offset, SECTORS);
sectors -= SECTORS;
offset += 2048 * SECTORS;
i += SECTORS;
}
if (sectors > 0) {
print_("!");
ata_device_read_sectors_atapi(device, i, (uint8_t *)KERNEL_LOAD_START + offset, sectors);
offset += 2048 * sectors;
}
final_offset = (uint8_t *)KERNEL_LOAD_START + offset;
set_attr(0x07);
print("Done.\n");
move_kernel();
}
} else {
print("No mod directory?\n");
}
} else {
print("boo\n");
}
return;
}
#endif
struct fw_cfg_file {
uint32_t size;
uint16_t select;
uint16_t reserved;
char name[56];
};
static int boot_mode = 0;
void swap_bytes(void * in, int count) {
char * bytes = in;
if (count == 4) {
uint32_t * t = in;
*t = (bytes[0] << 24) | (bytes[1] << 12) | (bytes[2] << 8) | bytes[3];
} else if (count == 2) {
uint16_t * t = in;
*t = (bytes[0] << 8) | bytes[1];
}
}
void show_menu(void) {
#if 1
/* Try to detect qemu headless boot */
outports(0x510, 0x0000);
if (inportb(0x511) == 'Q' &&
inportb(0x511) == 'E' &&
inportb(0x511) == 'M' &&
inportb(0x511) == 'U') {
uint32_t count = 0;
uint8_t * bytes = (uint8_t *)&count;
outports(0x510,0x0019);
for (int i = 0; i < 4; ++i) {
bytes[i] = inportb(0x511);
}
swap_bytes(&count, 4);
#if 0
print_("there are ");
print_hex_(count);
print_(" entries\n");
#endif
unsigned int bootmode_size = 0;
int bootmode_index = -1;
for (unsigned int i = 0; i < count; ++i) {
struct fw_cfg_file file;
uint8_t * tmp = (uint8_t *)&file;
for (int j = 0; j < sizeof(struct fw_cfg_file); ++j) {
tmp[j] = inportb(0x511);
}
if (!strcmp(file.name,"opt/org.toaruos.bootmode")) {
swap_bytes(&file.size, 4);
swap_bytes(&file.select, 2);
bootmode_size = file.size;
bootmode_index = file.select;
}
#if 0
print_("selector "); print_hex_(file.select); print_(" is "); print_hex_(file.size); print_(" bytes\n");
print_("and its name is: "); print_(file.name); print_("\n");
#endif
}
if (bootmode_index != -1) {
outports(0x510, bootmode_index);
char tmp[33] = {0};
for (int i = 0; i < 32 && i < bootmode_size; ++i) {
tmp[i] = inportb(0x511);
}
for (int i = 0; i < BASE_SEL+1; ++i) {
if (!strcmp(tmp,boot_mode_names[i].key)) {
boot_mode = boot_mode_names[i].index;
return;
}
}
print_("fw_cfg boot mode not recognized: ");
print_(tmp);
print_("\n");
}
}
#endif
/* Determine number of options */
sel_max = 0;
while (boot_options[sel_max].value) {
sel_max++;
}
sel_max += BASE_SEL + 1;
#ifndef EFI_PLATFORM
outportb(0x3D4, 14);
outportb(0x3D5, 0xFF);
outportb(0x3D4, 15);
outportb(0x3D5, 0xFF);
inportb(0x3DA);
outportb(0x3C0, 0x30);
char b = inportb(0x3C1);
b &= ~8;
outportb(0x3c0, b);
#endif
clear_();
do {
move_cursor(0,0);
set_attr(0x1f);
print_banner(VERSION_TEXT);
set_attr(0x07);
print_("\n");
for (int i = 0; i < BASE_SEL+1; ++i) {
set_attr(sel == i ? 0x70 : 0x07);
print_(" ");
char tmp[] = {'0' + (i + 1), '.', ' ', '\0'};
print_(tmp);
print_(boot_mode_names[i].title);
print_("\n");
}
// put a gap
set_attr(0x07);
print_("\n");
for (int i = 0; i < sel_max - BASE_SEL - 1; ++i) {
toggle(BASE_SEL + 1 + i, *boot_options[i].value, boot_options[i].title);
}
set_attr(0x07);
move_cursor(x,17);
print_("\n");
print_banner(HELP_TEXT);
print_("\n");
if (sel > BASE_SEL) {
print_banner(boot_options[sel-BASE_SEL-1].description_1);
print_banner(boot_options[sel-BASE_SEL-1].description_2);
print_("\n");
} else {
print_banner(COPYRIGHT_TEXT);
print_("\n");
print_banner(LINK_TEXT);
}
int s = read_scancode();
if (s == 0x50) { /* DOWN */
if (sel > BASE_SEL && sel < sel_max - 1) {
sel = (sel + 2) % sel_max;
} else {
sel = (sel + 1) % sel_max;
}
} else if (s == 0x48) { /* UP */
if (sel > BASE_SEL + 1) {
sel = (sel_max + sel - 2) % sel_max;
} else {
sel = (sel_max + sel - 1) % sel_max;
}
} else if (s == 0x4B) { /* LEFT */
if (sel > BASE_SEL) {
if ((sel - BASE_SEL) % 2) {
sel = (sel + 1) % sel_max;
} else {
sel -= 1;
}
}
} else if (s == 0x4D) { /* RIGHT */
if (sel > BASE_SEL) {
if ((sel - BASE_SEL) % 2) {
sel = (sel + 1) % sel_max;
} else {
sel -= 1;
}
}
} else if (s == 0x1c) {
if (sel <= BASE_SEL) {
boot_mode = boot_mode_names[sel].index;
break;
} else {
int index = sel - BASE_SEL - 1;
*boot_options[index].value = !*boot_options[index].value;
}
} else if (s >= 2 && s <= 10) {
int i = s - 2;
if (i <= BASE_SEL) {
boot_mode = boot_mode_names[i].index;
break;
}
#if 0
} else {
print_hex_(s);
#endif
}
} while (1);
}
#ifdef EFI_PLATFORM
/* EFI boot uses simple filesystem driver */
static EFI_GUID efi_simple_file_system_protocol_guid =
{0x0964e5b22,0x6459,0x11d2,0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b};
static EFI_GUID efi_loaded_image_protocol_guid =
{0x5B1B31A1,0x9562,0x11d2, {0x8E,0x3F,0x00,0xA0,0xC9,0x69,0x72,0x3B}};
static void boot(void) {
UINTN count;
EFI_HANDLE * handles;
EFI_LOADED_IMAGE * loaded_image;
EFI_FILE_IO_INTERFACE *efi_simple_filesystem;
EFI_FILE *root;
EFI_STATUS status;
clear_();
status = uefi_call_wrapper(ST->BootServices->HandleProtocol,
3, ImageHandleIn, &efi_loaded_image_protocol_guid,
(void **)&loaded_image);
if (EFI_ERROR(status)) {
print_("There was an error (init)\n");
while (1) {};
}
print_("Found loaded image...\n");
status = uefi_call_wrapper(ST->BootServices->HandleProtocol,
3, loaded_image->DeviceHandle, &efi_simple_file_system_protocol_guid,
(void **)&efi_simple_filesystem);
if (EFI_ERROR(status)) {
print_("There was an error.\n");
while (1) {};
}
status = uefi_call_wrapper(efi_simple_filesystem->OpenVolume,
2, efi_simple_filesystem, &root);
if (EFI_ERROR(status)) {
print_("There was an error.\n");
while (1) {};
}
EFI_FILE * file;
CHAR16 kernel_name[16] = {0};
{
char * c = kernel_path;
char * ascii = c;
int i = 0;
while (*ascii) {
kernel_name[i] = *ascii;
i++;
ascii++;
}
if (kernel_name[i-1] == L'.') {
kernel_name[i-1] = 0;
}
}
/* Load kernel */
status = uefi_call_wrapper(root->Open,
5, root, &file, kernel_name, EFI_FILE_MODE_READ, 0);
if (EFI_ERROR(status)) {
print_("There was an error.\n");
while (1) {};
}
unsigned int offset = 0;
UINTN bytes = 134217728;
status = uefi_call_wrapper(file->Read,
3, file, &bytes, (void *)KERNEL_LOAD_START);
if (EFI_ERROR(status)) {
print_("There was an error.\n");
while (1) {};
}
print_("Read "); print_hex_(bytes); print_(" bytes\n");
offset += bytes;
while (offset % 4096) offset++;
print_("Reading modules...\n");
char ** c = modules;
int j = 0;
while (*c) {
if (strcmp(*c, "NONE")) {
/* Try to load module */
CHAR16 name[16] = {0};
name[0] = L'm';
name[1] = L'o';
name[2] = L'd';
name[3] = L'\\';
char * ascii = *c;
int i = 0;
while (*ascii) {
name[i+4] = (*ascii >= 'A' && *ascii <= 'Z') ? (*ascii - 'A' + 'a') : *ascii;
name[i+5] = 0;
i++;
ascii++;
}
for (int i = 0; name[i]; ++i) {
char c[] = {name[i], 0};
print_(c);
}
print_("\n");
bytes = 2097152;
_try_module_again:
status = uefi_call_wrapper(root->Open,
5, root, &file, name, EFI_FILE_MODE_READ, 0);
if (!EFI_ERROR(status)) {
status = uefi_call_wrapper(file->Read,
3, file, &bytes, (void *)(KERNEL_LOAD_START + (uintptr_t)offset));
if (!EFI_ERROR(status)) {
print_("Loaded "); print_(*c); print_("\n");
modules_mboot[j].mod_start = KERNEL_LOAD_START + offset;
modules_mboot[j].mod_end = KERNEL_LOAD_START + offset + bytes;
j++;
offset += bytes;
while (offset % 4096) offset++;
}
} else {
print_("Error opening "); print_(*c); print_(" "); print_hex_(status); print_("\n");
while (1) { };
}
} else {
multiboot_header.mods_count--;
}
c++;
}
{
char * c = ramdisk_path;
CHAR16 name[16] = {0};
char * ascii = c;
int i = 0;
while (*ascii) {
name[i] = *ascii;
i++;
ascii++;
}
if (name[i-1] == L'.') {
name[i-1] == 0;
}
bytes = 134217728;
status = uefi_call_wrapper(root->Open,
5, root, &file, name, EFI_FILE_MODE_READ, 0);
if (!EFI_ERROR(status)) {
status = uefi_call_wrapper(file->Read,
3, file, &bytes, (void *)(KERNEL_LOAD_START + (uintptr_t)offset));
if (!EFI_ERROR(status)) {
print_("Loaded "); print_(c); print_("\n");
modules_mboot[multiboot_header.mods_count-1].mod_start = KERNEL_LOAD_START + offset;
modules_mboot[multiboot_header.mods_count-1].mod_end = KERNEL_LOAD_START + offset + bytes;
offset += bytes;
while (offset % 4096) offset++;
final_offset = (uint8_t *)KERNEL_LOAD_START + offset;
} else {
print_("Failed to read ramdisk\n");
}
} else {
print_("Error opening "); print_(c); print_("\n");
}
}
move_kernel();
}
#else
/* BIOS boot uses native ATAPI drivers, need to find boot drive. */
static void boot(void) {
clear_();
multiboot_header.cmdline = (uintptr_t)cmdline;
ata_device_detect(&ata_primary_master);
ata_device_detect(&ata_primary_slave);
ata_device_detect(&ata_secondary_master);
ata_device_detect(&ata_secondary_slave);
if (ata_primary_master.is_atapi) {
do_it(&ata_primary_master);
}
if (ata_primary_slave.is_atapi) {
do_it(&ata_primary_slave);
}
if (ata_secondary_master.is_atapi) {
do_it(&ata_secondary_master);
}
if (ata_secondary_slave.is_atapi) {
do_it(&ata_secondary_slave);
}
while (1);
}
#endif