toaruos/kernel/mem/mem.c
2018-03-19 11:38:11 +09:00

565 lines
14 KiB
C

/* vim: tabstop=4 shiftwidth=4 noexpandtab
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2011-2014 Kevin Lange
* Copyright (C) 2012 Markus Schober
*
* Kernel Memory Manager
*/
#include <kernel/mem.h>
#include <kernel/system.h>
#include <kernel/process.h>
#include <kernel/logging.h>
#include <kernel/signal.h>
#include <kernel/hashmap.h>
#include <kernel/module.h>
#define KERNEL_HEAP_INIT 0x00800000
#define KERNEL_HEAP_END 0x20000000
extern void *end;
uintptr_t placement_pointer = (uintptr_t)&end;
uintptr_t heap_end = (uintptr_t)NULL;
uintptr_t kernel_heap_alloc_point = KERNEL_HEAP_INIT;
//static volatile uint8_t frame_alloc_lock = 0;
static spin_lock_t frame_alloc_lock = { 0 };
uint32_t first_n_frames(int n);
void
kmalloc_startat(
uintptr_t address
) {
placement_pointer = address;
}
/*
* kmalloc() is the kernel's dumb placement allocator
*/
uintptr_t
kmalloc_real(
size_t size,
int align,
uintptr_t * phys
) {
if (heap_end) {
void * address;
if (align) {
address = valloc(size);
} else {
address = malloc(size);
}
if (phys) {
if (align && size >= 0x3000) {
debug_print(NOTICE, "Requested large aligned alloc of size 0x%x", size);
for (uintptr_t i = (uintptr_t)address; i < (uintptr_t)address + size; i += 0x1000) {
clear_frame(map_to_physical(i));
}
/* XXX This is going to get touchy... */
spin_lock(frame_alloc_lock);
uint32_t index = first_n_frames((size + 0xFFF) / 0x1000);
if (index == 0xFFFFFFFF) {
spin_unlock(frame_alloc_lock);
return 0;
}
for (unsigned int i = 0; i < (size + 0xFFF) / 0x1000; ++i) {
set_frame((index + i) * 0x1000);
page_t * page = get_page((uintptr_t)address + (i * 0x1000),0,kernel_directory);
ASSUME(page != NULL);
page->frame = index + i;
page->writethrough = 1;
page->cachedisable = 1;
}
spin_unlock(frame_alloc_lock);
}
*phys = map_to_physical((uintptr_t)address);
}
return (uintptr_t)address;
}
if (align && (placement_pointer & 0xFFFFF000)) {
placement_pointer &= 0xFFFFF000;
placement_pointer += 0x1000;
}
if (phys) {
*phys = placement_pointer;
}
uintptr_t address = placement_pointer;
placement_pointer += size;
return (uintptr_t)address;
}
/*
* Normal
*/
uintptr_t
kmalloc(
size_t size
) {
return kmalloc_real(size, 0, NULL);
}
/*
* Aligned
*/
uintptr_t
kvmalloc(
size_t size
) {
return kmalloc_real(size, 1, NULL);
}
/*
* With a physical address
*/
uintptr_t
kmalloc_p(
size_t size,
uintptr_t *phys
) {
return kmalloc_real(size, 0, phys);
}
/*
* Aligned, with a physical address
*/
uintptr_t
kvmalloc_p(
size_t size,
uintptr_t *phys
) {
return kmalloc_real(size, 1, phys);
}
/*
* Frame Allocation
*/
uint32_t *frames;
uint32_t nframes;
#define INDEX_FROM_BIT(b) (b / 0x20)
#define OFFSET_FROM_BIT(b) (b % 0x20)
void
set_frame(
uintptr_t frame_addr
) {
if (frame_addr < nframes * 4 * 0x400) {
uint32_t frame = frame_addr / 0x1000;
uint32_t index = INDEX_FROM_BIT(frame);
uint32_t offset = OFFSET_FROM_BIT(frame);
frames[index] |= ((uint32_t)0x1 << offset);
}
}
void
clear_frame(
uintptr_t frame_addr
) {
uint32_t frame = frame_addr / 0x1000;
uint32_t index = INDEX_FROM_BIT(frame);
uint32_t offset = OFFSET_FROM_BIT(frame);
frames[index] &= ~((uint32_t)0x1 << offset);
}
uint32_t test_frame(uintptr_t frame_addr) {
uint32_t frame = frame_addr / 0x1000;
uint32_t index = INDEX_FROM_BIT(frame);
uint32_t offset = OFFSET_FROM_BIT(frame);
return (frames[index] & ((uint32_t)0x1 << offset));
}
uint32_t first_n_frames(int n) {
for (uint32_t i = 0; i < nframes * 0x1000; i += 0x1000) {
int bad = 0;
for (int j = 0; j < n; ++j) {
if (test_frame(i + 0x1000 * j)) {
bad = j+1;
}
}
if (!bad) {
return i / 0x1000;
}
}
return 0xFFFFFFFF;
}
uint32_t first_frame(void) {
uint32_t i, j;
for (i = 0; i < INDEX_FROM_BIT(nframes); ++i) {
if (frames[i] != 0xFFFFFFFF) {
for (j = 0; j < 32; ++j) {
uint32_t testFrame = (uint32_t)0x1 << j;
if (!(frames[i] & testFrame)) {
return i * 0x20 + j;
}
}
}
}
debug_print(CRITICAL, "System claims to be out of usable memory, which means we probably overwrote the page frames.\033[0m");
if (debug_video_crash) {
char * msgs[] = {"Out of memory.", NULL};
debug_video_crash(msgs);
}
#if 0
signal_t * sig = malloc(sizeof(signal_t));
sig->handler = current_process->signals.functions[SIGSEGV];
sig->signum = SIGSEGV;
handle_signal((process_t *)current_process, sig);
#endif
STOP;
return -1;
}
void
alloc_frame(
page_t *page,
int is_kernel,
int is_writeable
) {
ASSUME(page != NULL);
if (page->frame != 0) {
page->present = 1;
page->rw = (is_writeable == 1) ? 1 : 0;
page->user = (is_kernel == 1) ? 0 : 1;
return;
} else {
spin_lock(frame_alloc_lock);
uint32_t index = first_frame();
assert(index != (uint32_t)-1 && "Out of frames.");
set_frame(index * 0x1000);
page->frame = index;
spin_unlock(frame_alloc_lock);
page->present = 1;
page->rw = (is_writeable == 1) ? 1 : 0;
page->user = (is_kernel == 1) ? 0 : 1;
}
}
void
dma_frame(
page_t *page,
int is_kernel,
int is_writeable,
uintptr_t address
) {
ASSUME(page != NULL);
/* Page this address directly */
page->present = 1;
page->rw = (is_writeable) ? 1 : 0;
page->user = (is_kernel) ? 0 : 1;
page->frame = address / 0x1000;
set_frame(address);
}
void
free_frame(
page_t *page
) {
uint32_t frame;
if (!(frame = page->frame)) {
assert(0);
return;
} else {
clear_frame(frame * 0x1000);
page->frame = 0x0;
}
}
uintptr_t memory_use(void ) {
uintptr_t ret = 0;
uint32_t i, j;
for (i = 0; i < INDEX_FROM_BIT(nframes); ++i) {
for (j = 0; j < 32; ++j) {
uint32_t testFrame = (uint32_t)0x1 << j;
if (frames[i] & testFrame) {
ret++;
}
}
}
return ret * 4;
}
uintptr_t memory_total(){
return nframes * 4;
}
void paging_install(uint32_t memsize) {
nframes = memsize / 4;
frames = (uint32_t *)kmalloc(INDEX_FROM_BIT(nframes * 8));
memset(frames, 0, INDEX_FROM_BIT(nframes * 8));
uintptr_t phys;
kernel_directory = (page_directory_t *)kvmalloc_p(sizeof(page_directory_t),&phys);
memset(kernel_directory, 0, sizeof(page_directory_t));
}
void paging_mark_system(uint64_t addr) {
set_frame(addr);
}
void paging_finalize(void) {
debug_print(INFO, "Placement pointer is at 0x%x", placement_pointer);
#if 1
get_page(0,1,kernel_directory)->present = 0;
set_frame(0);
for (uintptr_t i = 0x1000; i < 0x80000; i += 0x1000) {
#else
for (uintptr_t i = 0x0; i < 0x80000; i += 0x1000) {
#endif
dma_frame(get_page(i, 1, kernel_directory), 1, 0, i);
}
for (uintptr_t i = 0x80000; i < 0x100000; i += 0x1000) {
dma_frame(get_page(i, 1, kernel_directory), 1, 0, i);
}
for (uintptr_t i = 0x100000; i < placement_pointer + 0x3000; i += 0x1000) {
dma_frame(get_page(i, 1, kernel_directory), 1, 0, i);
}
debug_print(INFO, "Mapping VGA text-mode directly.");
for (uintptr_t j = 0xb8000; j < 0xc0000; j += 0x1000) {
dma_frame(get_page(j, 0, kernel_directory), 0, 1, j);
}
isrs_install_handler(14, page_fault);
kernel_directory->physical_address = (uintptr_t)kernel_directory->physical_tables;
uintptr_t tmp_heap_start = KERNEL_HEAP_INIT;
if (tmp_heap_start <= placement_pointer + 0x3000) {
debug_print(ERROR, "Foo: 0x%x, 0x%x", tmp_heap_start, placement_pointer + 0x3000);
tmp_heap_start = placement_pointer + 0x100000;
kernel_heap_alloc_point = tmp_heap_start;
}
/* Kernel Heap Space */
for (uintptr_t i = placement_pointer + 0x3000; i < tmp_heap_start; i += 0x1000) {
alloc_frame(get_page(i, 1, kernel_directory), 1, 0);
}
/* And preallocate the page entries for all the rest of the kernel heap as well */
for (uintptr_t i = tmp_heap_start; i < KERNEL_HEAP_END; i += 0x1000) {
get_page(i, 1, kernel_directory);
}
debug_print(NOTICE, "Setting directory.");
current_directory = clone_directory(kernel_directory);
switch_page_directory(kernel_directory);
}
uintptr_t map_to_physical(uintptr_t virtual) {
uintptr_t remaining = virtual % 0x1000;
uintptr_t frame = virtual / 0x1000;
uintptr_t table = frame / 1024;
uintptr_t subframe = frame % 1024;
if (current_directory->tables[table]) {
page_t * p = &current_directory->tables[table]->pages[subframe];
return p->frame * 0x1000 + remaining;
} else {
return 0;
}
}
void debug_print_directory(page_directory_t * arg) {
page_directory_t * current_directory = arg;
debug_print(INSANE, " ---- [k:0x%x u:0x%x]", kernel_directory, current_directory);
for (uintptr_t i = 0; i < 1024; ++i) {
if (!current_directory->tables[i] || (uintptr_t)current_directory->tables[i] == (uintptr_t)0xFFFFFFFF) {
continue;
}
if (kernel_directory->tables[i] == current_directory->tables[i]) {
debug_print(INSANE, " 0x%x - kern [0x%x/0x%x] 0x%x", current_directory->tables[i], &current_directory->tables[i], &kernel_directory->tables[i], i * 0x1000 * 1024);
for (uint16_t j = 0; j < 1024; ++j) {
#if 1
page_t * p= &current_directory->tables[i]->pages[j];
if (p->frame) {
debug_print(INSANE, " k 0x%x 0x%x %s", (i * 1024 + j) * 0x1000, p->frame * 0x1000, p->present ? "[present]" : "");
}
#endif
}
} else {
debug_print(INSANE, " 0x%x - user [0x%x] 0x%x [0x%x]", current_directory->tables[i], &current_directory->tables[i], i * 0x1000 * 1024, kernel_directory->tables[i]);
for (uint16_t j = 0; j < 1024; ++j) {
#if 1
page_t * p= &current_directory->tables[i]->pages[j];
if (p->frame) {
debug_print(INSANE, " 0x%x 0x%x %s", (i * 1024 + j) * 0x1000, p->frame * 0x1000, p->present ? "[present]" : "");
}
#endif
}
}
}
debug_print(INFO, " ---- [done]");
}
void
switch_page_directory(
page_directory_t * dir
) {
current_directory = dir;
asm volatile (
"mov %0, %%cr3\n"
"mov %%cr0, %%eax\n"
"orl $0x80000000, %%eax\n"
"mov %%eax, %%cr0\n"
:: "r"(dir->physical_address)
: "%eax");
}
void invalidate_page_tables(void) {
asm volatile (
"movl %%cr3, %%eax\n"
"movl %%eax, %%cr3\n"
::: "%eax");
}
void invalidate_tables_at(uintptr_t addr) {
asm volatile (
"movl %0,%%eax\n"
"invlpg (%%eax)\n"
:: "r"(addr) : "%eax");
}
page_t *
get_page(
uintptr_t address,
int make,
page_directory_t * dir
) {
address /= 0x1000;
uint32_t table_index = address / 1024;
if (dir->tables[table_index]) {
return &dir->tables[table_index]->pages[address % 1024];
} else if(make) {
uint32_t temp;
dir->tables[table_index] = (page_table_t *)kvmalloc_p(sizeof(page_table_t), (uintptr_t *)(&temp));
ASSUME(dir->tables[table_index] != NULL);
memset(dir->tables[table_index], 0, sizeof(page_table_t));
dir->physical_tables[table_index] = temp | 0x7; /* Present, R/w, User */
return &dir->tables[table_index]->pages[address % 1024];
} else {
return 0;
}
}
void
page_fault(
struct regs *r) {
ASSUME(r != NULL);
uint32_t faulting_address;
asm volatile("mov %%cr2, %0" : "=r"(faulting_address));
if (r->eip == SIGNAL_RETURN) {
return_from_signal_handler();
} else if (r->eip == THREAD_RETURN) {
debug_print(INFO, "Returned from thread.");
kexit(0);
}
#if 1
int present = !(r->err_code & 0x1) ? 1 : 0;
int rw = r->err_code & 0x2 ? 1 : 0;
int user = r->err_code & 0x4 ? 1 : 0;
int reserved = r->err_code & 0x8 ? 1 : 0;
int id = r->err_code & 0x10 ? 1 : 0;
debug_print(ERROR, "\033[1;37;41mSegmentation fault. (p:%d,rw:%d,user:%d,res:%d,id:%d) at 0x%x eip: 0x%x pid=%d,%d [%s]\033[0m",
present, rw, user, reserved, id, faulting_address, r->eip, current_process->id, current_process->group, current_process->name);
if (r->eip < heap_end) {
/* find closest symbol */
char * closest = NULL;
size_t distance = 0xFFFFFFFF;
uintptr_t addr = 0;
if (modules_get_symbols()) {
list_t * hash_keys = hashmap_keys(modules_get_symbols());
foreach(_key, hash_keys) {
char * key = (char *)_key->value;
uintptr_t a = (uintptr_t)hashmap_get(modules_get_symbols(), key);
if (!a) continue;
size_t d;
if (a <= r->eip) {
d = r->eip - a;
} else {
d = a - r->eip;
}
if (d < distance) {
closest = key;
distance = d;
addr = a;
}
}
free(hash_keys);
debug_print(ERROR, "\033[1;31mClosest symbol to faulting address:\033[0m %s [0x%x]", closest, addr);
hash_keys = hashmap_keys(modules_get_list());
foreach(_key, hash_keys) {
char * key = (char *)_key->value;
module_data_t * m = (module_data_t *)hashmap_get(modules_get_list(), key);
if ((r->eip >= (uintptr_t)m->bin_data) && (r->eip < m->end)) {
debug_print(ERROR, "\033[1;31mIn module:\033[0m %s (starts at 0x%x)", m->mod_info->name, m->bin_data);
break;
}
}
free(hash_keys);
debug_print(ERROR, "User EIP: 0x%x", current_process->syscall_registers->eip);
}
} else {
debug_print(ERROR, "\033[1;31m(In userspace)\033[0m");
}
#endif
signal_t * sig = malloc(sizeof(signal_t));
sig->handler = current_process->signals.functions[SIGSEGV];
sig->signum = SIGSEGV;
handle_signal((process_t *)current_process, sig);
}
/*
* Heap
* Stop using kalloc and friends after installing the heap
* otherwise shit will break. I've conveniently broken
* kalloc when installing the heap, just for those of you
* who feel the need to screw up.
*/
void heap_install(void ) {
heap_end = (placement_pointer + 0x1000) & ~0xFFF;
}
void * sbrk(uintptr_t increment) {
assert((increment % 0x1000 == 0) && "Kernel requested to expand heap by a non-page-multiple value");
assert((heap_end % 0x1000 == 0) && "Kernel heap is not page-aligned!");
assert((heap_end + increment <= KERNEL_HEAP_END - 1) && "The kernel has attempted to allocate beyond the end of its heap.");
uintptr_t address = heap_end;
if (heap_end + increment > kernel_heap_alloc_point) {
debug_print(INFO, "Hit the end of available kernel heap, going to allocate more (at 0x%x, want to be at 0x%x)", heap_end, heap_end + increment);
for (uintptr_t i = heap_end; i < heap_end + increment; i += 0x1000) {
debug_print(INFO, "Allocating frame at 0x%x...", i);
page_t * page = get_page(i, 0, kernel_directory);
assert(page && "Kernel heap allocation fault.");
alloc_frame(page, 1, 0);
}
invalidate_page_tables();
debug_print(INFO, "Done.");
}
heap_end += increment;
memset((void *)address, 0x0, increment);
return (void *)address;
}