toaruos/apps/polygons.c

358 lines
9.6 KiB
C

/**
* @brief Draw filled polygons from line segments.
*
* This is an older version of the polygon rasterizer that turned
* into the TrueType gylph rasterizer. Still makes for a neat
* little graphical demo. Should probably be updated to use
* the glyph rasterization code instead of its own oudated
* copy though...
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2021 K. Lange
*/
#include <stdio.h>
#include <sys/fswait.h>
#include <toaru/yutani.h>
#include <toaru/graphics.h>
#define min(a,b) ((a) < (b) ? (a) : (b))
static int left, top, width, height;
static yutani_t * yctx;
static yutani_window_t * wina;
static gfx_context_t * ctx;
static int should_exit = 0;
struct coord {
float x;
float y;
};
struct edge {
struct coord start;
struct coord end;
int direction;
};
struct contour {
size_t edgeCount;
size_t nextAlloc;
size_t flags;
size_t last_start;
struct edge edges[];
};
struct intersection {
float x;
int affect;
};
struct shape {
size_t edgeCount;
int lastY;
struct edge edges[];
};
static int edge_sorter_high_scanline(const void * a, const void * b) {
const struct edge * left = a;
const struct edge * right = b;
if (left->start.y < right->start.y) return -1;
if (left->start.y > right->start.y) return 1;
return 0;
}
static void sort_edges(size_t edgeCount, struct edge edges[edgeCount]) {
qsort(edges, edgeCount, sizeof(struct edge), edge_sorter_high_scanline);
}
static int intersection_sorter(const void * a, const void * b) {
const struct intersection * left = a;
const struct intersection * right = b;
if (left->x < right->x) return -1;
if (left->x > right->x) return 1;
return 0;
}
static void sort_intersections(size_t cnt, struct intersection intersections[cnt]) {
qsort(intersections, cnt, sizeof(struct intersection), intersection_sorter);
}
static size_t prune_edges(size_t edgeCount, float y, struct edge edges[edgeCount], struct edge into[edgeCount]) {
size_t outWriter = 0;
for (size_t i = 0; i < edgeCount; ++i) {
if (y > edges[i].start.y && y > edges[i].end.y) continue;
if (y <= edges[i].start.y && y <= edges[i].end.y) break;
into[outWriter++] = edges[i];
}
return outWriter;
}
static float edge_at(float y, struct edge * edge) {
float u = (y - edge->start.y) / (edge->end.y - edge->start.y);
return edge->start.x + u * (edge->end.x - edge->start.x);
}
struct shape * path_finish(struct contour * in) {
size_t size = in->edgeCount + 1;
struct shape * tmp = malloc(sizeof(struct shape) + sizeof(struct edge) * size);
memcpy(tmp->edges, in->edges, sizeof(struct edge) * in->edgeCount);
if (in->flags & 1) {
size--;
} else {
tmp->edges[in->edgeCount].start.x = in->edges[in->edgeCount-1].end.x;
tmp->edges[in->edgeCount].start.y = in->edges[in->edgeCount-1].end.y;
tmp->edges[in->edgeCount].end.x = in->edges[in->last_start].start.x;
tmp->edges[in->edgeCount].end.y = in->edges[in->last_start].start.y;
}
for (size_t i = 0; i < size; ++i) {
if (tmp->edges[i].start.y < tmp->edges[i].end.y) {
tmp->edges[i].direction = 1;
} else {
tmp->edges[i].direction = -1;
struct coord j = tmp->edges[i].start;
tmp->edges[i].start = tmp->edges[i].end;
tmp->edges[i].end = j;
}
}
sort_edges(size, tmp->edges);
tmp->edgeCount = size;
tmp->lastY = 0;
for (size_t i = 0; i < size; ++i) {
if (tmp->edges[i].end.y + 1 > tmp->lastY) tmp->lastY = tmp->edges[i].end.y + 1;
}
return tmp;
}
void path_paint(gfx_context_t * ctx, struct shape * shape, uint32_t color) {
size_t size = shape->edgeCount;
struct edge * intersects = malloc(sizeof(struct edge) * size);
struct intersection * crosses = malloc(sizeof(struct intersection) * size);
float * subsamples = malloc(sizeof(float) * width);
memset(subsamples, 0, sizeof(float) * width);
/* We have sorted by the scanline at which the line becomes active, so we should be able to do this... */
int yres = 4;
for (int y = shape->edges[0].start.y; y < shape->lastY; ++y) {
/* Figure out which ones fit here */
float _y = y;
int start_x = ctx->width;
int max_x = 0;
for (int l = 0; l < yres; ++l) {
size_t cnt = prune_edges(size, _y, shape->edges, intersects);
if (cnt) {
/* Get intersections */
for (size_t j = 0; j < cnt; ++j) {
crosses[j].x = edge_at(_y,&intersects[j]);
crosses[j].affect = intersects[j].direction;
}
/* Now sort the intersections */
sort_intersections(cnt, crosses);
if (crosses[0].x < start_x) start_x = crosses[0].x;
if (crosses[cnt-1].x+1 > max_x) max_x = crosses[cnt-1].x+1;
int wind = 0;
size_t j = 0;
for (int x = 0; x < width && j < cnt; ++x) {
while (j < cnt && x > crosses[j].x) {
wind += crosses[j].affect;
j++;
}
float last = x;
while (j < cnt && (x+1) > crosses[j].x) {
if (wind != 0) {
subsamples[x] += crosses[j].x - last;
}
last = crosses[j].x;
wind += crosses[j].affect;
j++;
}
if (wind != 0) {
subsamples[x] += (x+1) - last;
}
}
}
_y += 1.0/(float)yres;
}
for (int x = start_x; x < max_x && x < ctx->width; ++x) {
unsigned int c = subsamples[x] / (float)yres * (float)_ALP(color);
uint32_t nc = premultiply((color & 0xFFFFFF) | ((c & 0xFF) << 24));
GFX(ctx, x, y) = alpha_blend_rgba(GFX(ctx, x, y), nc);
subsamples[x] = 0;
}
}
free(subsamples);
free(crosses);
free(intersects);
}
struct contour * shape = NULL;
struct shape * finalizedShape = NULL;
static void move_to(float x, float y);
static uint32_t myColor = 0;
static void add_point(float x, float y) {
myColor = rgb(rand() % 255,rand() % 255,rand() % 255);
if (!shape) {
move_to(x,y);
} else if (shape->flags & 1) {
shape->edges[shape->edgeCount].end.x = x;
shape->edges[shape->edgeCount].end.y = y;
shape->edgeCount++;
shape->flags &= ~1;
} else {
if (shape->edgeCount + 1 == shape->nextAlloc) {
shape->nextAlloc *= 2;
shape = realloc(shape, sizeof(struct contour) + sizeof(struct edge) * (shape->nextAlloc));
}
shape->edges[shape->edgeCount].start.x = shape->edges[shape->edgeCount-1].end.x;
shape->edges[shape->edgeCount].start.y = shape->edges[shape->edgeCount-1].end.y;
shape->edges[shape->edgeCount].end.x = x;
shape->edges[shape->edgeCount].end.y = y;
shape->edgeCount++;
shape->flags &= ~1;
}
}
static void move_to(float x, float y) {
if (!shape) {
shape = malloc(sizeof(struct contour) + sizeof(struct edge) * 2);
shape->edgeCount = 0;
shape->nextAlloc = 2;
shape->flags = 0;
shape->last_start = 0;
} else if (!(shape->flags & 1) && shape->edgeCount) {
add_point(shape->edges[shape->last_start].start.x, shape->edges[shape->last_start].start.y);
}
if (shape->edgeCount + 1 == shape->nextAlloc) {
shape->nextAlloc *= 2;
shape = realloc(shape, sizeof(struct contour) + sizeof(struct edge) * (shape->nextAlloc));
}
shape->edges[shape->edgeCount].start.x = x;
shape->edges[shape->edgeCount].start.y = y;
shape->last_start = shape->edgeCount;
shape->flags |= 1;
}
static void draw(void) {
draw_fill(ctx, rgba(0,0,0,10));
if (shape) {
if (shape->last_start + 1 == shape->edgeCount) {
draw_line(ctx, shape->edges[shape->last_start].start.x, shape->edges[shape->last_start].end.x, shape->edges[shape->last_start].start.y, shape->edges[shape->last_start].end.y, rgb(255,255,255));
}
if (finalizedShape) {
/* Oh boy */
path_paint(ctx, finalizedShape, myColor);
}
}
}
static void finish_draw(void) {
flip(ctx);
yutani_flip(yctx, wina);
}
int main (int argc, char ** argv) {
left = 100;
top = 100;
width = 500;
height = 500;
yctx = yutani_init();
if (!yctx) {
fprintf(stderr, "%s: failed to connect to compositor\n", argv[0]);
return 1;
}
wina = yutani_window_create(yctx, width, height);
yutani_window_move(yctx, wina, left, top);
yutani_window_advertise_icon(yctx, wina, "polygons", "polygons");
ctx = init_graphics_yutani_double_buffer(wina);
draw();
finish_draw();
while (!should_exit) {
int fds[1] = {fileno(yctx->sock)};
int index = fswait2(1,fds,20);
if (index == 0) {
yutani_msg_t * m = yutani_poll(yctx);
while (m) {
switch (m->type) {
case YUTANI_MSG_KEY_EVENT:
{
struct yutani_msg_key_event * ke = (void*)m->data;
if (ke->event.action == KEY_ACTION_DOWN && ke->event.keycode == 'q') {
should_exit = 1;
}
}
break;
case YUTANI_MSG_WINDOW_MOUSE_EVENT:
{
struct yutani_msg_window_mouse_event * me = (void*)m->data;
float x = (float)me->new_x;
float y = (float)me->new_y;
if (me->command == YUTANI_MOUSE_EVENT_DOWN && me->buttons & YUTANI_MOUSE_BUTTON_LEFT) {
add_point(x, y);
if (finalizedShape) free(finalizedShape);
finalizedShape = path_finish(shape);
draw();
finish_draw();
} else if (me->buttons & YUTANI_MOUSE_BUTTON_RIGHT) {
move_to(x, y);
draw();
finish_draw();
} else if (shape && (shape->flags & 1)) {
draw();
draw_line(ctx,
shape->edges[shape->edgeCount].start.x,
x,
shape->edges[shape->edgeCount].start.y,
y,
rgb(0,200,0));
finish_draw();
} else if (shape && !(shape->flags & 1)) {
draw();
draw_line(ctx,
shape->edges[shape->edgeCount-1].end.x,
x,
shape->edges[shape->edgeCount-1].end.y,
y,
rgb(0,200,0));
finish_draw();
}
}
break;
case YUTANI_MSG_WINDOW_CLOSE:
case YUTANI_MSG_SESSION_END:
should_exit = 1;
break;
default:
break;
}
free(m);
m = yutani_poll_async(yctx);
}
}
}
yutani_close(yctx, wina);
return 0;
}