/* utf8_decode.c */ /* 2009-02-13 */ /* Copyright (c) 2005 JSON.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. The Software shall be used for Good, not Evil. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "utf8_decode.h" /* Very Strict UTF-8 Decoder UTF-8 is a multibyte character encoding of Unicode. A character can be represented by 1-4 bytes. The bit pattern of the first byte indicates the number of continuation bytes. Most UTF-8 decoders tend to be lenient, attempting to recover as much information as possible, even from badly encoded input. This UTF-8 decoder is not lenient. It will reject input which does not include proper continuation bytes. It will reject aliases (or suboptimal codings). It will reject surrogates. (Surrogate encoding should only be used with UTF-16.) Code Contination Minimum Maximum 0xxxxxxx 0 0 127 10xxxxxx error 110xxxxx 1 128 2047 1110xxxx 2 2048 65535 excluding 55296 - 57343 11110xxx 3 65536 1114111 11111xxx error */ static int the_index = 0; static int the_length = 0; static int the_char = 0; static int the_byte = 0; static char* the_input; /* Get the next byte. It returns UTF8_END if there are no more bytes. */ static int get() { int c; if (the_index >= the_length) { return UTF8_END; } c = the_input[the_index] & 0xFF; the_index += 1; return c; } /* Get the 6-bit payload of the next continuation byte. Return UTF8_ERROR if it is not a contination byte. */ static int cont() { int c = get(); return ((c & 0xC0) == 0x80) ? (c & 0x3F) : UTF8_ERROR; } /* Initialize the UTF-8 decoder. The decoder is not reentrant, */ void utf8_decode_init(char p[], int length) { the_index = 0; the_input = p; the_length = length; the_char = 0; the_byte = 0; } /* Get the current byte offset. This is generally used in error reporting. */ int utf8_decode_at_byte() { return the_byte; } /* Get the current character offset. This is generally used in error reporting. The character offset matches the byte offset if the text is strictly ASCII. */ int utf8_decode_at_character() { return the_char > 0 ? the_char - 1 : 0; } /* Extract the next character. Returns: the character (between 0 and 1114111) or UTF8_END (the end) or UTF8_ERROR (error) */ int utf8_decode_next() { int c; /* the first byte of the character */ int r; /* the result */ if (the_index >= the_length) { return the_index == the_length ? UTF8_END : UTF8_ERROR; } the_byte = the_index; the_char += 1; c = get(); /* Zero continuation (0 to 127) */ if ((c & 0x80) == 0) { return c; } /* One contination (128 to 2047) */ if ((c & 0xE0) == 0xC0) { int c1 = cont(); if (c1 < 0) { return UTF8_ERROR; } r = ((c & 0x1F) << 6) | c1; return r >= 128 ? r : UTF8_ERROR; } /* Two continuation (2048 to 55295 and 57344 to 65535) */ if ((c & 0xF0) == 0xE0) { int c1 = cont(); int c2 = cont(); if (c1 < 0 || c2 < 0) { return UTF8_ERROR; } r = ((c & 0x0F) << 12) | (c1 << 6) | c2; return r >= 2048 && (r < 55296 || r > 57343) ? r : UTF8_ERROR; } /* Three continuation (65536 to 1114111) */ if ((c & 0xF8) == 0xF0) { int c1 = cont(); int c2 = cont(); int c3 = cont(); if (c1 < 0 || c2 < 0 || c3 < 0) { return UTF8_ERROR; } r = ((c & 0x0F) << 18) | (c1 << 12) | (c2 << 6) | c3; return r >= 65536 && r <= 1114111 ? r : UTF8_ERROR; } return UTF8_ERROR; }