/** * @file kernel/audio/snd.c * @brief Gerow's Audio Subsystem for ToaruOS * * Simple generic mixer interface. Allows userspace to pipe audio data * to the kernel audio drivers and control volume knobs. * * Currently has the ability to mix several sound sources together. Could use * a /dev/mixer device to allow changing of audio settings. Also could use * the ability to change frequency and format for audio samples. Also doesn't * really support multiple devices despite the interface suggesting it might... * * @copyright * This file is part of ToaruOS and is released under the terms * of the NCSA / University of Illinois License - see LICENSE.md * Copyright (C) 2015 Mike Gerow */ #include #include #include #include #include #include #include #include /* Utility macros */ #define N_ELEMENTS(arr) (sizeof(arr) / sizeof((arr)[0])) #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define SND_BUF_SIZE 0x4000 static ssize_t snd_dsp_write(fs_node_t * node, off_t offset, size_t size, uint8_t *buffer); static int snd_dsp_ioctl(fs_node_t * node, unsigned long request, void * argp); static void snd_dsp_open(fs_node_t * node, unsigned int flags); static void snd_dsp_close(fs_node_t * node); static int snd_mixer_ioctl(fs_node_t * node, unsigned long request, void * argp); static void snd_mixer_open(fs_node_t * node, unsigned int flags); static void snd_mixer_close(fs_node_t * node); static spin_lock_t _devices_lock; static list_t _devices; static fs_node_t _dsp_fnode = { .name = "dsp", .device = &_devices, .mask = 0666, .flags = FS_CHARDEVICE, .ioctl = snd_dsp_ioctl, .write = snd_dsp_write, .open = snd_dsp_open, .close = snd_dsp_close, }; static fs_node_t _mixer_fnode = { .name = "mixer", .mask = 0666, .flags = FS_CHARDEVICE, .ioctl = snd_mixer_ioctl, .open = snd_mixer_open, .close = snd_mixer_close, }; static spin_lock_t _buffers_lock; static list_t _buffers; static uint32_t _next_device_id = SND_DEVICE_MAIN; struct dsp_node { ring_buffer_t * rb; size_t samples; size_t written; int realtime; }; int snd_register(snd_device_t * device) { int rv = 0; spin_lock(_devices_lock); device->id = _next_device_id; _next_device_id++; if (list_find(&_devices, device)) { rv = -1; goto snd_register_cleanup; } list_insert(&_devices, device); snd_register_cleanup: spin_unlock(_devices_lock); return rv; } int snd_unregister(snd_device_t * device) { int rv = 0; node_t * node = list_find(&_devices, device); if (!node) { printf("attempted to unregister unknown audio sink: %s\n", device->name); goto snd_unregister_cleanup; } list_delete(&_devices, node); snd_unregister_cleanup: spin_unlock(_devices_lock); return rv; } static ssize_t snd_dsp_write(fs_node_t * node, off_t offset, size_t size, uint8_t *buffer) { if (!_devices.length) return -1; /* No sink available. */ struct dsp_node * dsp = node->device; size_t s = ring_buffer_available(dsp->rb); size_t out; if (size > s && dsp->realtime) { out = ring_buffer_write(dsp->rb, s & ~0x3, buffer); } else { out = ring_buffer_write(dsp->rb, size, buffer); } dsp->written += out / 4; return out; } static int snd_dsp_ioctl(fs_node_t * node, unsigned long request, void * argp) { /* Potentially use this to set sample rates in the future */ struct dsp_node * dsp = node->device; if (request == 4) { dsp->realtime = 1; } else if (request == 5) { return dsp->samples; } return -1; } static void snd_dsp_open(fs_node_t * node, unsigned int flags) { /* * XXX(gerow): A process could take the memory of the entire system by opening * too many of these... */ /* Allocate a buffer for the node and keep a reference for ourselves */ struct dsp_node * dsp = malloc(sizeof(struct dsp_node)); dsp->rb = ring_buffer_create(SND_BUF_SIZE); dsp->samples = 0; dsp->written = 0; dsp->realtime = 0; node->device = dsp; spin_lock(_buffers_lock); list_insert(&_buffers, node->device); spin_unlock(_buffers_lock); } static void snd_dsp_close(fs_node_t * node) { struct dsp_node * dsp = node->device; spin_lock(_buffers_lock); list_delete(&_buffers, list_find(&_buffers, dsp)); spin_unlock(_buffers_lock); ring_buffer_destroy(dsp->rb); free(dsp->rb); free(dsp); } static snd_device_t * snd_device_by_id(uint32_t device_id) { spin_lock(_devices_lock); snd_device_t * out = NULL; snd_device_t * cur = NULL; foreach(node, &_devices) { cur = node->value; if (cur->id == device_id) { out = cur; } } spin_unlock(_devices_lock); return out; } static int snd_mixer_ioctl(fs_node_t * node, unsigned long request, void * argp) { switch (request) { case SND_MIXER_GET_KNOBS: { snd_knob_list_t * list = argp; snd_device_t * device = snd_device_by_id(list->device); if (!device) { return -EINVAL; } list->num = device->num_knobs; for (uint32_t i = 0; i < device->num_knobs; i++) { list->ids[i] = device->knobs[i].id; } return 0; } case SND_MIXER_GET_KNOB_INFO: { snd_knob_info_t * info = argp; snd_device_t * device = snd_device_by_id(info->device); if (!device) { return -EINVAL; } for (uint32_t i = 0; i < device->num_knobs; i++) { if (device->knobs[i].id == info->id) { memcpy(info->name, device->knobs[i].name, sizeof(info->name)); return 0; } } return -EINVAL; } case SND_MIXER_READ_KNOB: { snd_knob_value_t * value = argp; snd_device_t * device = snd_device_by_id(value->device); if (!device) { return -EINVAL; } return device->mixer_read(value->id, &value->val); } case SND_MIXER_WRITE_KNOB: { snd_knob_value_t * value = argp; snd_device_t * device = snd_device_by_id(value->device); if (!device) { return -EINVAL; } return device->mixer_write(value->id, value->val); } default: { return -EINVAL; } } } static void snd_mixer_open(fs_node_t * node, unsigned int flags) { return; } static void snd_mixer_close(fs_node_t * node) { return; } int snd_request_buf(snd_device_t * device, uint32_t size, uint8_t *buffer) { static int16_t tmp_buf[0x100]; memset(buffer, 0, size); spin_lock(_buffers_lock); foreach(buf_node, &_buffers) { struct dsp_node * dsp = buf_node->value; ring_buffer_t * buf = dsp->rb; /* ~0x3 is to ensure we don't read partial samples or just a single channel */ size_t bytes_left = MIN(ring_buffer_unread(buf) & ~0x3, size); int16_t * adding_ptr = (int16_t *) buffer; while (bytes_left) { size_t this_read_size = MIN(bytes_left, sizeof(tmp_buf)); ring_buffer_read(buf, this_read_size, (uint8_t *)tmp_buf); dsp->samples += this_read_size / 4; /* 16 bits, 2 channels */ /* * Reduce the sample by a half so that multiple sources won't immediately * cause awful clipping. This is kind of a hack since it would probably be * better to just use some kind of compressor. */ for (size_t i = 0; i < N_ELEMENTS(tmp_buf); i++) { tmp_buf[i] /= 2; } for (size_t i = 0; i < this_read_size / sizeof(*adding_ptr); i++) { adding_ptr[i] += tmp_buf[i]; } adding_ptr += this_read_size / sizeof(*adding_ptr); bytes_left -= this_read_size; } } spin_unlock(_buffers_lock); return size; } static snd_device_t * snd_main_device() { spin_lock(_devices_lock); foreach(node, &_devices) { spin_unlock(_devices_lock); return node->value; } spin_unlock(_devices_lock); return NULL; } void snd_install(void) { vfs_mount("/dev/dsp", &_dsp_fnode); vfs_mount("/dev/mixer", &_mixer_fnode); }