/** * @file kernel/net/e1000.c * @brief Intel Gigabit Ethernet device driver * * @copyright * This file is part of ToaruOS and is released under the terms * of the NCSA / University of Illinois License - see LICENSE.md * Copyright (C) 2017-2021 K. Lange */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define INTS ((1 << 2) | (1 << 6) | (1 << 7) | (1 << 1) | (1 << 0)) struct e1000_nic { /* This should be generic netif struct stuff... */ char if_name[32]; uint8_t mac[6]; /* XXX: just to get things going */ uint32_t ipv4_addr; uint8_t ipv6_addr[16]; /* TODO: Address lists? */ fs_node_t * device_node; uint32_t pci_device; uint16_t deviceid; uintptr_t mmio_addr; int irq_number; int has_eeprom; int rx_index; int tx_index; int link_status; spin_lock_t net_queue_lock; spin_lock_t alert_lock; list_t * net_queue; list_t * rx_wait; list_t * alert_wait; uint8_t * rx_virt[E1000_NUM_RX_DESC]; uint8_t * tx_virt[E1000_NUM_TX_DESC]; struct e1000_rx_desc * rx; struct e1000_tx_desc * tx; uintptr_t rx_phys; uintptr_t tx_phys; }; static int device_count = 0; static struct e1000_nic * devices[32] = {NULL}; static uint32_t mmio_read32(uintptr_t addr) { return *((volatile uint32_t*)(addr)); } static void mmio_write32(uintptr_t addr, uint32_t val) { (*((volatile uint32_t*)(addr))) = val; } static void write_command(struct e1000_nic * device, uint16_t addr, uint32_t val) { mmio_write32(device->mmio_addr + addr, val); } static uint32_t read_command(struct e1000_nic * device, uint16_t addr) { return mmio_read32(device->mmio_addr + addr); } static void delay_yield(size_t subticks) { unsigned long s, ss; relative_time(0, subticks, &s, &ss); sleep_until((process_t *)this_core->current_process, s, ss); switch_task(0); } static void enqueue_packet(struct e1000_nic * device, void * buffer) { spin_lock(device->net_queue_lock); list_insert(device->net_queue, buffer); spin_unlock(device->net_queue_lock); } static struct ethernet_packet * dequeue_packet(struct e1000_nic * device) { while (!device->net_queue->length) { sleep_on(device->rx_wait); } spin_lock(device->net_queue_lock); node_t * n = list_dequeue(device->net_queue); void* value = n->value; free(n); spin_unlock(device->net_queue_lock); return value; } static int eeprom_detect(struct e1000_nic * device) { /* Definitely not */ if (device->deviceid == 0x10d3) return 0; write_command(device, E1000_REG_EEPROM, 1); for (int i = 0; i < 100000 && !device->has_eeprom; ++i) { uint32_t val = read_command(device, E1000_REG_EEPROM); if (val & 0x10) device->has_eeprom = 1; } return 0; } static uint16_t eeprom_read(struct e1000_nic * device, uint8_t addr) { uint32_t temp = 0; write_command(device, E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8)); while (!((temp = read_command(device, E1000_REG_EEPROM)) & (1 << 4))); return (uint16_t)((temp >> 16) & 0xFFFF); } static void write_mac(struct e1000_nic * device) { uint32_t low, high; memcpy(&low, &device->mac[0], 4); memcpy(&high,&device->mac[4], 2); memset((uint8_t *)&high + 2, 0, 2); high |= 0x80000000; write_command(device, E1000_REG_RXADDR + 0, low); write_command(device, E1000_REG_RXADDR + 4, high); } static void read_mac(struct e1000_nic * device) { if (device->has_eeprom) { uint32_t t; t = eeprom_read(device, 0); device->mac[0] = t & 0xFF; device->mac[1] = t >> 8; t = eeprom_read(device, 1); device->mac[2] = t & 0xFF; device->mac[3] = t >> 8; t = eeprom_read(device, 2); device->mac[4] = t & 0xFF; device->mac[5] = t >> 8; } else { uint32_t mac_addr_low = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR); uint32_t mac_addr_high = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR + 4); device->mac[0] = (mac_addr_low >> 0 ) & 0xFF; device->mac[1] = (mac_addr_low >> 8 ) & 0xFF; device->mac[2] = (mac_addr_low >> 16) & 0xFF; device->mac[3] = (mac_addr_low >> 24) & 0xFF; device->mac[4] = (mac_addr_high>> 0 ) & 0xFF; device->mac[5] = (mac_addr_high>> 8 ) & 0xFF; } } static void e1000_alert_waiters(struct e1000_nic * nic) { spin_lock(nic->alert_lock); while (nic->alert_wait->head) { node_t * node = list_dequeue(nic->alert_wait); process_t * p = node->value; free(node); spin_unlock(nic->alert_lock); process_alert_node(p, nic->device_node); spin_lock(nic->alert_lock); } spin_unlock(nic->alert_lock); } static void e1000_handle(struct e1000_nic * nic, uint32_t status) { if (status & ICR_LSC) { /* TODO: Change interface link status. */ nic->link_status= (read_command(nic, E1000_REG_STATUS) & (1 << 1)); } if (status & ICR_TXQE) { /* Transmit queue empty; nothing to do. */ } if (status & ICR_TXDW) { /* transmit descriptor written */ } if (status & (ICR_RXO | ICR_RXT0)) { /* Packet received. */ do { nic->rx_index = read_command(nic, E1000_REG_RXDESCTAIL); if (nic->rx_index == (int)read_command(nic, E1000_REG_RXDESCHEAD)) return; nic->rx_index = (nic->rx_index + 1) % E1000_NUM_RX_DESC; if (nic->rx[nic->rx_index].status & 0x01) { uint8_t * pbuf = (uint8_t *)nic->rx_virt[nic->rx_index]; uint16_t plen = nic->rx[nic->rx_index].length; void * packet = malloc(8092); memcpy(packet, pbuf, plen); nic->rx[nic->rx_index].status = 0; enqueue_packet(nic, packet); write_command(nic, E1000_REG_RXDESCTAIL, nic->rx_index); } else { break; } } while (1); wakeup_queue(nic->rx_wait); e1000_alert_waiters(nic); } } static int irq_handler(struct regs *r) { int irq = r->int_no - 32; int handled = 0; for (int i = 0; i < device_count; ++i) { if (devices[i]->irq_number == irq) { uint32_t status = read_command(devices[i], E1000_REG_ICR); if (status) { write_command(devices[i], 0x00D8,INTS); e1000_handle(devices[i], status); read_command(devices[i], E1000_REG_ICR); if (!handled) { handled = 1; irq_ack(irq); } write_command(devices[i], 0x00D0,INTS); } } } return handled; } static void send_packet(struct e1000_nic * device, uint8_t* payload, size_t payload_size) { device->tx_index = read_command(device, E1000_REG_TXDESCTAIL); memcpy(device->tx_virt[device->tx_index], payload, payload_size); device->tx[device->tx_index].length = payload_size; device->tx[device->tx_index].cmd = CMD_EOP | CMD_IFCS | CMD_RS; //| CMD_RPS; device->tx[device->tx_index].status = 0; device->tx_index = (device->tx_index + 1) % E1000_NUM_TX_DESC; write_command(device, E1000_REG_TXDESCTAIL, device->tx_index); } static void init_rx(struct e1000_nic * device) { write_command(device, E1000_REG_RXDESCLO, device->rx_phys); write_command(device, E1000_REG_RXDESCHI, 0); write_command(device, E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct e1000_rx_desc)); write_command(device, E1000_REG_RXDESCHEAD, 0); write_command(device, E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1); device->rx_index = 0; write_command(device, E1000_REG_RCTRL, RCTL_EN | (1 << 2) | /* store bad packets */ (1 << 4) | /* multicast promiscuous */ (1 << 15) | /* broadcast accept */ (1 << 26) /* strip CRC */ ); } static void init_tx(struct e1000_nic * device) { write_command(device, E1000_REG_TXDESCLO, device->tx_phys); write_command(device, E1000_REG_TXDESCHI, 0); write_command(device, E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct e1000_tx_desc)); write_command(device, E1000_REG_TXDESCHEAD, 0); write_command(device, E1000_REG_TXDESCTAIL, 0); device->tx_index = 0; write_command(device, E1000_REG_TCTRL, TCTL_EN | TCTL_PSP | read_command(device, E1000_REG_TCTRL)); } static int ioctl_e1000(fs_node_t * node, int request, void * argp) { struct e1000_nic * nic = node->device; switch (request) { case 0x12340001: /* fill argp with mac */ memcpy(argp, nic->mac, 6); return 0; case 0x12340002: if (nic->ipv4_addr == 0) return -ENOENT; memcpy(argp, &nic->ipv4_addr, sizeof(nic->ipv4_addr)); return 0; case 0x12340012: memcpy(&nic->ipv4_addr, argp, sizeof(nic->ipv4_addr)); return 0; case 0x12340003: return -ENOENT; case 0x12340013: memcpy(&nic->ipv6_addr, argp, sizeof(nic->ipv6_addr)); return 0; default: return -EINVAL; } } static uint64_t write_e1000(fs_node_t *node, uint64_t offset, uint64_t size, uint8_t *buffer) { struct e1000_nic * nic = node->device; /* write packet */ send_packet(nic, buffer, size); return size; } static uint64_t read_e1000(fs_node_t *node, uint64_t offset, uint64_t size, uint8_t *buffer) { if (size != 8092) return 0; struct e1000_nic * nic = node->device; struct ethernet_packet * packet = dequeue_packet(nic); memcpy(buffer, packet, 8092); free(packet); return 8092; } static int check_e1000(fs_node_t *node) { struct e1000_nic * nic = node->device; return nic->net_queue->head ? 0 : 1; } static int wait_e1000(fs_node_t *node, void * process) { struct e1000_nic * nic = node->device; spin_lock(nic->alert_lock); if (!list_find(nic->alert_wait, process)) { list_insert(nic->alert_wait, process); } list_insert(((process_t *)process)->node_waits, nic->device_node); spin_unlock(nic->alert_lock); return 0; } static void e1000_init(void * data) { struct e1000_nic * nic = data; uint32_t e1000_device_pci = nic->pci_device; nic->rx_phys = mmu_allocate_a_frame() << 12; if (nic->rx_phys == 0) { printf("e1000[%s]: unable to allocate memory for buffers\n", nic->if_name); switch_task(0); } nic->rx = mmu_map_from_physical(nic->rx_phys); nic->tx_phys = nic->rx_phys + 512; nic->tx = mmu_map_from_physical(nic->tx_phys); /* Allocate buffers */ for (int i = 0; i < E1000_NUM_RX_DESC; ++i) { nic->rx[i].addr = mmu_allocate_n_frames(2) << 12; if (nic->rx[i].addr == 0) { printf("e1000[%s]: unable to allocate memory for receive buffer\n", nic->if_name); switch_task(0); } nic->rx_virt[i] = mmu_map_from_physical(nic->rx[i].addr); nic->rx[i].status = 0; } for (int i = 0; i < E1000_NUM_TX_DESC; ++i) { nic->tx[i].addr = mmu_allocate_n_frames(2) << 12; if (nic->tx[i].addr == 0) { printf("e1000[%s]: unable to allocate memory for receive buffer\n", nic->if_name); switch_task(0); } nic->tx_virt[i] = mmu_map_from_physical(nic->tx[i].addr); nic->tx[i].status = 0; nic->tx[i].cmd = (1 << 0); } uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2); command_reg |= (1 << 2); command_reg |= (1 << 0); pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg); delay_yield(10000); /* Is this size enough? */ uint32_t initial_bar = pci_read_field(e1000_device_pci, PCI_BAR0, 4); nic->mmio_addr = (uintptr_t)mmu_map_mmio_region(initial_bar, 0x8000); eeprom_detect(nic); read_mac(nic); write_mac(nic); uint32_t ctrl = read_command(nic, E1000_REG_CTRL); /* reset phy */ write_command(nic, E1000_REG_CTRL, ctrl | (0x80000000)); read_command(nic, E1000_REG_STATUS); delay_yield(10000); /* reset mac */ write_command(nic, E1000_REG_CTRL, ctrl | (0x04000000)); read_command(nic, E1000_REG_STATUS); delay_yield(10000); /* Reload EEPROM */ write_command(nic, E1000_REG_CTRL, ctrl | (0x00002000)); read_command(nic, E1000_REG_STATUS); delay_yield(20000); /* initialize */ write_command(nic, E1000_REG_CTRL, ctrl | (1 << 26)); delay_yield(10000); uint32_t status = read_command(nic, E1000_REG_CTRL); status |= (1 << 5); /* set auto speed detection */ status |= (1 << 6); /* set link up */ status &= ~(1 << 3); /* unset link reset */ status &= ~(1UL << 31UL); /* unset phy reset */ status &= ~(1 << 7); /* unset invert loss-of-signal */ write_command(nic, E1000_REG_CTRL, status); /* Disables flow control */ write_command(nic, 0x0028, 0); write_command(nic, 0x002c, 0); write_command(nic, 0x0030, 0); write_command(nic, 0x0170, 0); /* Unset flow control */ status = read_command(nic, E1000_REG_CTRL); status &= ~(1 << 30); write_command(nic, E1000_REG_CTRL, status); delay_yield(10000); nic->net_queue = list_create("e1000 net queue", nic); nic->rx_wait = list_create("e1000 rx sem", nic); nic->alert_wait = list_create("e1000 select waiters", nic); nic->irq_number = pci_get_interrupt(e1000_device_pci); irq_install_handler(nic->irq_number, irq_handler, nic->if_name); for (int i = 0; i < 128; ++i) { write_command(nic, 0x5200 + i * 4, 0); } for (int i = 0; i < 64; ++i) { write_command(nic, 0x4000 + i * 4, 0); } init_rx(nic); init_tx(nic); /* Twiddle interrupts */ write_command(nic, 0x00D0, 0xFFFFFFFF); write_command(nic, 0x00D8, 0xFFFFFFFF); write_command(nic, 0x00D0, INTS); delay_yield(10000); nic->link_status = (read_command(nic, E1000_REG_STATUS) & (1 << 1)); nic->device_node = calloc(sizeof(fs_node_t),1); snprintf(nic->device_node->name, 100, "%s", nic->if_name); nic->device_node->flags = FS_BLOCKDEVICE; /* NETDEVICE? */ nic->device_node->mask = 0666; /* temporary; shouldn't be doing this with these device files */ nic->device_node->ioctl = ioctl_e1000; nic->device_node->write = write_e1000; nic->device_node->read = read_e1000; nic->device_node->selectcheck = check_e1000; nic->device_node->selectwait = wait_e1000; nic->device_node->device = nic; net_add_interface(nic->if_name, nic->device_node); switch_task(0); } static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * found) { if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea || deviceid == 0x10d3)) { /* Allocate a device */ struct e1000_nic * nic = calloc(1,sizeof(struct e1000_nic)); nic->pci_device = device; nic->deviceid = deviceid; devices[device_count++] = nic; snprintf(nic->if_name, 31, "enp%ds%d", (int)pci_extract_bus(device), (int)pci_extract_slot(device)); char worker_name[34]; snprintf(worker_name, 33, "[%s]", nic->if_name); spawn_worker_thread(e1000_init, worker_name, nic); *(int*)found = 1; } } void e1000_initialize(void) { uint32_t found = 0; pci_scan(&find_e1000, -1, &found); if (!found) { /* TODO: Clean up? Remove ourselves? */ return; } }