/** * @brief (P)ATA / IDE disk driver * @file modules/ata.c * @package x86_64 * * @warning This is very buggy. * * This is a port of the original ATA driver for toaru32. * It has a number of issues. It should not be considered * stable, or a viable reference. * * @copyright * This file is part of ToaruOS and is released under the terms * of the NCSA / University of Illinois License - see LICENSE.md * Copyright (C) 2014-2021 K. Lange */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ATA_SR_BSY 0x80 #define ATA_SR_DRDY 0x40 #define ATA_SR_DF 0x20 #define ATA_SR_DSC 0x10 #define ATA_SR_DRQ 0x08 #define ATA_SR_CORR 0x04 #define ATA_SR_IDX 0x02 #define ATA_SR_ERR 0x01 #define ATA_ER_BBK 0x80 #define ATA_ER_UNC 0x40 #define ATA_ER_MC 0x20 #define ATA_ER_IDNF 0x10 #define ATA_ER_MCR 0x08 #define ATA_ER_ABRT 0x04 #define ATA_ER_TK0NF 0x02 #define ATA_ER_AMNF 0x01 #define ATA_CMD_READ_PIO 0x20 #define ATA_CMD_READ_PIO_EXT 0x24 #define ATA_CMD_READ_DMA 0xC8 #define ATA_CMD_READ_DMA_EXT 0x25 #define ATA_CMD_WRITE_PIO 0x30 #define ATA_CMD_WRITE_PIO_EXT 0x34 #define ATA_CMD_WRITE_DMA 0xCA #define ATA_CMD_WRITE_DMA_EXT 0x35 #define ATA_CMD_CACHE_FLUSH 0xE7 #define ATA_CMD_CACHE_FLUSH_EXT 0xEA #define ATA_CMD_PACKET 0xA0 #define ATA_CMD_IDENTIFY_PACKET 0xA1 #define ATA_CMD_IDENTIFY 0xEC #define ATAPI_CMD_READ 0xA8 #define ATAPI_CMD_EJECT 0x1B #define ATA_IDENT_DEVICETYPE 0 #define ATA_IDENT_CYLINDERS 2 #define ATA_IDENT_HEADS 6 #define ATA_IDENT_SECTORS 12 #define ATA_IDENT_SERIAL 20 #define ATA_IDENT_MODEL 54 #define ATA_IDENT_CAPABILITIES 98 #define ATA_IDENT_FIELDVALID 106 #define ATA_IDENT_MAX_LBA 120 #define ATA_IDENT_COMMANDSETS 164 #define ATA_IDENT_MAX_LBA_EXT 200 #define IDE_ATA 0x00 #define IDE_ATAPI 0x01 #define ATA_MASTER 0x00 #define ATA_SLAVE 0x01 #define ATA_REG_DATA 0x00 #define ATA_REG_ERROR 0x01 #define ATA_REG_FEATURES 0x01 #define ATA_REG_SECCOUNT0 0x02 #define ATA_REG_LBA0 0x03 #define ATA_REG_LBA1 0x04 #define ATA_REG_LBA2 0x05 #define ATA_REG_HDDEVSEL 0x06 #define ATA_REG_COMMAND 0x07 #define ATA_REG_STATUS 0x07 #define ATA_REG_SECCOUNT1 0x08 #define ATA_REG_LBA3 0x09 #define ATA_REG_LBA4 0x0A #define ATA_REG_LBA5 0x0B #define ATA_REG_CONTROL 0x0C #define ATA_REG_ALTSTATUS 0x0C #define ATA_REG_DEVADDRESS 0x0D // Channels: #define ATA_PRIMARY 0x00 #define ATA_SECONDARY 0x01 // Directions: #define ATA_READ 0x00 #define ATA_WRITE 0x01 typedef struct { uint16_t base; uint16_t ctrl; uint16_t bmide; uint16_t nien; } ide_channel_regs_t; typedef struct { uint8_t reserved; uint8_t channel; uint8_t drive; uint16_t type; uint16_t signature; uint16_t capabilities; uint32_t command_sets; uint32_t size; uint8_t model[41]; } ide_device_t; typedef struct { uint16_t flags; uint16_t unused1[9]; char serial[20]; uint16_t unused2[3]; char firmware[8]; char model[40]; uint16_t sectors_per_int; uint16_t unused3; uint16_t capabilities[2]; uint16_t unused4[2]; uint16_t valid_ext_data; uint16_t unused5[5]; uint16_t size_of_rw_mult; uint32_t sectors_28; uint16_t unused6[38]; uint64_t sectors_48; uint16_t unused7[152]; } __attribute__((packed)) ata_identify_t; static char ata_drive_char = 'a'; static int cdrom_number = 0; static uint32_t ata_pci = 0x00000000; static list_t * atapi_waiter; static int found_something = 0; typedef union { uint8_t command_bytes[12]; uint16_t command_words[6]; } atapi_command_t; /* 8086:7010 */ static void find_ata_pci(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) { if ((vendorid == 0x8086) && (deviceid == 0x7010 || deviceid == 0x7111)) { *((uint32_t *)extra) = device; } } typedef struct { uintptr_t offset; uint16_t bytes; uint16_t last; } prdt_t; struct ata_device { int io_base; int control; int slave; int is_atapi; ata_identify_t identity; prdt_t * dma_prdt; uintptr_t dma_prdt_phys; uint8_t * dma_start; uintptr_t dma_start_phys; uint32_t bar4; uint32_t atapi_lba; uint32_t atapi_sector_size; }; static struct ata_device ata_primary_master = {.io_base = 0x1F0, .control = 0x3F6, .slave = 0}; static struct ata_device ata_primary_slave = {.io_base = 0x1F0, .control = 0x3F6, .slave = 1}; static struct ata_device ata_secondary_master = {.io_base = 0x170, .control = 0x376, .slave = 0}; static struct ata_device ata_secondary_slave = {.io_base = 0x170, .control = 0x376, .slave = 1}; static spin_lock_t atapi_cmd_lock = { 0 }; /* TODO support other sector sizes */ #define ATA_SECTOR_SIZE 512 #define ATA_CACHE_SIZE 4096 #define SECTORS_PER_CACHE_BLOCK 8 static void ata_device_read_sector(struct ata_device * dev, uint64_t lba, uint8_t * buf); static void ata_device_read_sector_atapi(struct ata_device * dev, uint64_t lba, uint8_t * buf); static void ata_device_write_sector(struct ata_device * dev, uint64_t lba, uint8_t * buf); static void ata_device_write_sector_actual(struct ata_device * dev, uint64_t lba); struct CacheEntry { struct ata_device * dev; uint64_t lba; uint64_t last_use; uint64_t flags; }; #define CACHE_COUNT 4096 static uint64_t hit_count = 0; static uint64_t miss_count = 0; static uint64_t eviction_count = 0; static uint64_t write_count = 0; static sched_mutex_t * ata_mutex = NULL; static struct CacheEntry * cache_entries = NULL; static char * cache_blocks = NULL; static uint64_t counter = 1; static off_t ata_max_offset(struct ata_device * dev) { uint64_t sectors = dev->identity.sectors_48; if (!sectors) { /* Fall back to sectors_28 */ sectors = dev->identity.sectors_28; } return sectors * ATA_SECTOR_SIZE; } static off_t atapi_max_offset(struct ata_device * dev) { uint64_t max_sector = dev->atapi_lba; if (!max_sector) return 0; return (max_sector + 1) * dev->atapi_sector_size; } static ssize_t read_ata(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) { struct ata_device * dev = (struct ata_device *)node->device; unsigned int start_block = offset / ATA_CACHE_SIZE; unsigned int end_block = (offset + size - 1) / ATA_CACHE_SIZE; unsigned int x_offset = 0; if (offset > ata_max_offset(dev)) { return 0; } if (offset + (ssize_t)size > ata_max_offset(dev)) { unsigned int i = ata_max_offset(dev) - offset; size = i; } if (offset % ATA_CACHE_SIZE || size < ATA_CACHE_SIZE) { unsigned int prefix_size = (ATA_CACHE_SIZE - (offset % ATA_CACHE_SIZE)); if (prefix_size > size) prefix_size = size; char * tmp = malloc(ATA_CACHE_SIZE); ata_device_read_sector(dev, start_block, (uint8_t *)tmp); memcpy(buffer, (void *)((uintptr_t)tmp + ((uintptr_t)offset % ATA_CACHE_SIZE)), prefix_size); free(tmp); x_offset += prefix_size; start_block++; } if ((offset + size) % ATA_CACHE_SIZE && start_block <= end_block) { unsigned int postfix_size = (offset + size) % ATA_CACHE_SIZE; char * tmp = malloc(ATA_CACHE_SIZE); ata_device_read_sector(dev, end_block, (uint8_t *)tmp); memcpy((void *)((uintptr_t)buffer + size - postfix_size), tmp, postfix_size); free(tmp); end_block--; } while (start_block <= end_block) { ata_device_read_sector(dev, start_block, (uint8_t *)((uintptr_t)buffer + x_offset)); x_offset += ATA_CACHE_SIZE; start_block++; } return size; } static ssize_t read_atapi(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) { struct ata_device * dev = (struct ata_device *)node->device; unsigned int start_block = offset / dev->atapi_sector_size; unsigned int end_block = (offset + size - 1) / dev->atapi_sector_size; unsigned int x_offset = 0; if (offset > atapi_max_offset(dev)) { return 0; } if (offset + (ssize_t)size > atapi_max_offset(dev)) { unsigned int i = atapi_max_offset(dev) - offset; size = i; } if (offset % dev->atapi_sector_size || size < dev->atapi_sector_size) { unsigned int prefix_size = (dev->atapi_sector_size - (offset % dev->atapi_sector_size)); if (prefix_size > size) prefix_size = size; char * tmp = malloc(dev->atapi_sector_size); ata_device_read_sector_atapi(dev, start_block, (uint8_t *)tmp); memcpy(buffer, (void *)((uintptr_t)tmp + ((uintptr_t)offset % dev->atapi_sector_size)), prefix_size); free(tmp); x_offset += prefix_size; start_block++; } if ((offset + size) % dev->atapi_sector_size && start_block <= end_block) { unsigned int postfix_size = (offset + size) % dev->atapi_sector_size; char * tmp = malloc(dev->atapi_sector_size); ata_device_read_sector_atapi(dev, end_block, (uint8_t *)tmp); memcpy((void *)((uintptr_t)buffer + size - postfix_size), tmp, postfix_size); free(tmp); end_block--; } while (start_block <= end_block) { ata_device_read_sector_atapi(dev, start_block, (uint8_t *)((uintptr_t)buffer + x_offset)); x_offset += dev->atapi_sector_size; start_block++; } return size; } static ssize_t write_ata(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) { struct ata_device * dev = (struct ata_device *)node->device; unsigned int start_block = offset / ATA_CACHE_SIZE; unsigned int end_block = (offset + size - 1) / ATA_CACHE_SIZE; unsigned int x_offset = 0; if (offset > ata_max_offset(dev)) { return 0; } if (offset + (ssize_t)size > ata_max_offset(dev)) { unsigned int i = ata_max_offset(dev) - offset; size = i; } if (offset % ATA_CACHE_SIZE) { unsigned int prefix_size = (ATA_CACHE_SIZE - (offset % ATA_CACHE_SIZE)); char * tmp = malloc(ATA_CACHE_SIZE); ata_device_read_sector(dev, start_block, (uint8_t *)tmp); memcpy((void *)((uintptr_t)tmp + ((uintptr_t)offset % ATA_CACHE_SIZE)), buffer, prefix_size); ata_device_write_sector(dev, start_block, (uint8_t *)tmp); free(tmp); x_offset += prefix_size; start_block++; } if ((offset + size) % ATA_CACHE_SIZE && start_block <= end_block) { unsigned int postfix_size = (offset + size) % ATA_CACHE_SIZE; char * tmp = malloc(ATA_CACHE_SIZE); ata_device_read_sector(dev, end_block, (uint8_t *)tmp); memcpy(tmp, (void *)((uintptr_t)buffer + size - postfix_size), postfix_size); ata_device_write_sector(dev, end_block, (uint8_t *)tmp); free(tmp); end_block--; } while (start_block <= end_block) { ata_device_write_sector(dev, start_block, (uint8_t *)((uintptr_t)buffer + x_offset)); x_offset += ATA_CACHE_SIZE; start_block++; } return size; } static void open_ata(fs_node_t * node, unsigned int flags) { return; } static void close_ata(fs_node_t * node) { return; } static int ioctl_ata(fs_node_t * node, unsigned long request, void * argp) { struct ata_device * dev = (struct ata_device *)node->device; switch (request) { case IOCTLSYNC: { mutex_acquire(ata_mutex); for (int i = 0; i < CACHE_COUNT; ++i) { if (cache_entries[i].dev == dev && cache_entries[i].flags & 1) { eviction_count++; memcpy(cache_entries[i].dev->dma_start, cache_blocks + i * ATA_CACHE_SIZE, ATA_CACHE_SIZE); ata_device_write_sector_actual(cache_entries[i].dev, cache_entries[i].lba); cache_entries[i].flags = 0; } } mutex_release(ata_mutex); return 0; } case 0x2A01234UL: { uint64_t * args = argp; memcpy(&args[0], &hit_count, sizeof(uint64_t)); memcpy(&args[1], &miss_count, sizeof(uint64_t)); memcpy(&args[2], &eviction_count, sizeof(uint64_t)); memcpy(&args[3], &write_count, sizeof(uint64_t)); return 0; } default: return -EINVAL; } } static fs_node_t * atapi_device_create(struct ata_device * device) { fs_node_t * fnode = malloc(sizeof(fs_node_t)); memset(fnode, 0x00, sizeof(fs_node_t)); fnode->inode = 0; snprintf(fnode->name, 20, "cdrom%d", cdrom_number); fnode->device = device; fnode->uid = 0; fnode->gid = 0; fnode->mask = 0664; fnode->length = atapi_max_offset(device); fnode->flags = FS_BLOCKDEVICE; fnode->read = read_atapi; fnode->write = NULL; /* no write support */ fnode->open = open_ata; fnode->close = close_ata; fnode->readdir = NULL; fnode->finddir = NULL; fnode->ioctl = NULL; /* TODO, identify, etc? */ return fnode; } static fs_node_t * ata_device_create(struct ata_device * device) { fs_node_t * fnode = malloc(sizeof(fs_node_t)); memset(fnode, 0x00, sizeof(fs_node_t)); fnode->inode = 0; snprintf(fnode->name, 10, "atadev%d", ata_drive_char - 'a'); fnode->device = device; fnode->uid = 0; fnode->gid = 0; fnode->mask = 0660; fnode->length = ata_max_offset(device); /* TODO */ fnode->flags = FS_BLOCKDEVICE; fnode->read = read_ata; fnode->write = write_ata; fnode->open = open_ata; fnode->close = close_ata; fnode->readdir = NULL; fnode->finddir = NULL; fnode->ioctl = ioctl_ata; /* TODO, identify, etc? */ return fnode; } static void ata_io_wait(struct ata_device * dev) { inportb(dev->io_base + ATA_REG_ALTSTATUS); inportb(dev->io_base + ATA_REG_ALTSTATUS); inportb(dev->io_base + ATA_REG_ALTSTATUS); inportb(dev->io_base + ATA_REG_ALTSTATUS); } static int ata_status_wait(struct ata_device * dev, int timeout) { int status; if (timeout > 0) { int i = 0; while ((status = inportb(dev->io_base + ATA_REG_STATUS)) & ATA_SR_BSY && (i < timeout)) i++; } else { while ((status = inportb(dev->io_base + ATA_REG_STATUS)) & ATA_SR_BSY); } return status; } static int ata_wait(struct ata_device * dev, int advanced) { uint8_t status = 0; ata_io_wait(dev); status = ata_status_wait(dev, -1); if (advanced) { status = inportb(dev->io_base + ATA_REG_STATUS); if (status & ATA_SR_ERR) return 1; if (status & ATA_SR_DF) return 1; if (!(status & ATA_SR_DRQ)) return 1; } return 0; } static void ata_soft_reset(struct ata_device * dev) { outportb(dev->control, 0x04); ata_io_wait(dev); outportb(dev->control, 0x00); } static int ata_irq_handler(struct regs *r) { struct ata_device * dev = r->int_no == 14 ? &ata_primary_master : &ata_secondary_master; inportb(dev->io_base + ATA_REG_STATUS); spin_lock(atapi_cmd_lock); wakeup_queue(atapi_waiter); spin_unlock(atapi_cmd_lock); irq_ack(r->int_no); return 1; } static void * kvmalloc_p(size_t size, uintptr_t * outphys) { uintptr_t index = mmu_allocate_n_frames(size / 0x1000) << 12; *outphys = index; return mmu_map_from_physical(index); } static void ata_device_init(struct ata_device * dev) { outportb(dev->io_base + 1, 1); outportb(dev->control, 0); outportb(dev->io_base + ATA_REG_HDDEVSEL, 0xA0 | dev->slave << 4); ata_io_wait(dev); outportb(dev->io_base + ATA_REG_COMMAND, ATA_CMD_IDENTIFY); ata_io_wait(dev); inportb(dev->io_base + ATA_REG_COMMAND); ata_wait(dev, 0); uint16_t * buf = (uint16_t *)&dev->identity; for (int i = 0; i < 256; ++i) { buf[i] = inports(dev->io_base); } uint8_t * ptr = (uint8_t *)&dev->identity.model; for (int i = 0; i < 39; i+=2) { uint8_t tmp = ptr[i+1]; ptr[i+1] = ptr[i]; ptr[i] = tmp; } dev->is_atapi = 0; dev->dma_prdt = (void *)kvmalloc_p(4096, &dev->dma_prdt_phys); dev->dma_start = (void *)kvmalloc_p(4096, &dev->dma_start_phys); dev->dma_prdt[0].offset = dev->dma_start_phys; dev->dma_prdt[0].bytes = ATA_CACHE_SIZE; dev->dma_prdt[0].last = 0x8000; uint16_t command_reg = pci_read_field(ata_pci, PCI_COMMAND, 4); if (!(command_reg & (1 << 2))) { command_reg |= (1 << 2); /* bit 2 */ pci_write_field(ata_pci, PCI_COMMAND, 4, command_reg); command_reg = pci_read_field(ata_pci, PCI_COMMAND, 4); } dev->bar4 = pci_read_field(ata_pci, PCI_BAR4, 4); if (dev->bar4 & 0x00000001) { dev->bar4 = dev->bar4 & 0xFFFFFFFC; } else { return; /* No DMA because we're not sure what to do here */ } } static int atapi_device_init(struct ata_device * dev) { dev->is_atapi = 1; outportb(dev->io_base + 1, 1); outportb(dev->control, 0); outportb(dev->io_base + ATA_REG_HDDEVSEL, 0xA0 | dev->slave << 4); ata_io_wait(dev); outportb(dev->io_base + ATA_REG_COMMAND, ATA_CMD_IDENTIFY_PACKET); ata_io_wait(dev); inportb(dev->io_base + ATA_REG_COMMAND); ata_wait(dev, 0); uint16_t * buf = (uint16_t *)&dev->identity; for (int i = 0; i < 256; ++i) { buf[i] = inports(dev->io_base); } uint8_t * ptr = (uint8_t *)&dev->identity.model; for (int i = 0; i < 39; i+=2) { uint8_t tmp = ptr[i+1]; ptr[i+1] = ptr[i]; ptr[i] = tmp; } /* Detect medium */ atapi_command_t command; command.command_bytes[0] = 0x25; command.command_bytes[1] = 0; command.command_bytes[2] = 0; command.command_bytes[3] = 0; command.command_bytes[4] = 0; command.command_bytes[5] = 0; command.command_bytes[6] = 0; command.command_bytes[7] = 0; command.command_bytes[8] = 0; /* bit 0 = PMI (0, last sector) */ command.command_bytes[9] = 0; /* control */ command.command_bytes[10] = 0; command.command_bytes[11] = 0; uint16_t bus = dev->io_base; outportb(bus + ATA_REG_FEATURES, 0x00); outportb(bus + ATA_REG_LBA1, 0x08); outportb(bus + ATA_REG_LBA2, 0x08); outportb(bus + ATA_REG_COMMAND, ATA_CMD_PACKET); /* poll */ int timeout = 100; while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if ((status & ATA_SR_ERR)) goto atapi_error; if (timeout-- < 0) goto atapi_timeout; if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY)) break; } for (int i = 0; i < 6; ++i) { outports(bus, command.command_words[i]); } /* poll */ timeout = 100; while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if ((status & ATA_SR_ERR)) goto atapi_error_read; if (timeout-- < 0) goto atapi_timeout; if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY)) break; if ((status & ATA_SR_DRQ)) break; } uint16_t data[4]; for (int i = 0; i < 4; ++i) { data[i] = inports(bus); } #define htonl(l) ( (((l) & 0xFF) << 24) | (((l) & 0xFF00) << 8) | (((l) & 0xFF0000) >> 8) | (((l) & 0xFF000000) >> 24)) uint32_t lba, blocks;; memcpy(&lba, &data[0], sizeof(uint32_t)); lba = htonl(lba); memcpy(&blocks, &data[2], sizeof(uint32_t)); blocks = htonl(blocks); dev->atapi_lba = lba; dev->atapi_sector_size = blocks; if (!lba) return 1; return 0; atapi_error_read: return 1; atapi_error: return 1; atapi_timeout: return 1; } static int ata_device_detect(struct ata_device * dev) { ata_soft_reset(dev); ata_io_wait(dev); outportb(dev->io_base + ATA_REG_HDDEVSEL, 0xA0 | dev->slave << 4); ata_io_wait(dev); ata_status_wait(dev, 10000); unsigned char cl = inportb(dev->io_base + ATA_REG_LBA1); /* CYL_LO */ unsigned char ch = inportb(dev->io_base + ATA_REG_LBA2); /* CYL_HI */ if (cl == 0xFF && ch == 0xFF) { /* Nothing here */ return 0; } if ((cl == 0x00 && ch == 0x00) || (cl == 0x3C && ch == 0xC3)) { /* Parallel ATA device, or emulated SATA */ ata_device_init(dev); off_t sectors = ata_max_offset(dev); if (sectors == 0) { return 0; } char devname[64]; snprintf((char *)&devname, 20, "/dev/hd%c", ata_drive_char); fs_node_t * node = ata_device_create(dev); vfs_mount(devname, node); node->length = sectors; ata_drive_char++; found_something = 1; return 1; } else if ((cl == 0x14 && ch == 0xEB) || (cl == 0x69 && ch == 0x96)) { char devname[64]; snprintf((char *)&devname, 20, "/dev/cdrom%d", cdrom_number); if (atapi_device_init(dev)) { return 0; } fs_node_t * node = atapi_device_create(dev); vfs_mount(devname, node); cdrom_number++; found_something = 1; return 2; } /* TODO: ATAPI, SATA, SATAPI */ return 0; } static void ata_device_read_sector_actual(struct ata_device * dev, uint64_t lba) { uint16_t bus = dev->io_base; uint8_t slave = dev->slave; if (dev->is_atapi) return; ata_wait(dev, 0); /* Stop */ outportb(dev->bar4, 0x00); /* Set the PRDT */ outportl(dev->bar4 + 0x04, dev->dma_prdt_phys); /* Enable error, irq status */ outportb(dev->bar4 + 0x2, inportb(dev->bar4 + 0x02) | 0x04 | 0x02); /* set read */ outportb(dev->bar4, 0x08); while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if (!(status & ATA_SR_BSY)) break; } outportb(bus + ATA_REG_CONTROL, 0x00); outportb(bus + ATA_REG_HDDEVSEL, 0xe0 | slave << 4); ata_io_wait(dev); outportb(bus + ATA_REG_FEATURES, 0x00); outportb(bus + ATA_REG_SECCOUNT0, 0); outportb(bus + ATA_REG_LBA0, (lba & 0xff000000) >> 24); outportb(bus + ATA_REG_LBA1, (lba & 0xff00000000) >> 32); outportb(bus + ATA_REG_LBA2, (lba & 0xff0000000000) >> 40); outportb(bus + ATA_REG_SECCOUNT0, SECTORS_PER_CACHE_BLOCK); outportb(bus + ATA_REG_LBA0, (lba & 0x000000ff) >> 0); outportb(bus + ATA_REG_LBA1, (lba & 0x0000ff00) >> 8); outportb(bus + ATA_REG_LBA2, (lba & 0x00ff0000) >> 16); while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY)) break; } spin_lock(atapi_cmd_lock); outportb(bus + ATA_REG_COMMAND, ATA_CMD_READ_DMA_EXT); ata_io_wait(dev); outportb(dev->bar4, 0x08 | 0x01); sleep_on_unlocking(atapi_waiter, &atapi_cmd_lock); while (1) { int status = inportb(dev->bar4 + 0x02); int dstatus = inportb(dev->io_base + ATA_REG_STATUS); if (!(status & 0x04)) { continue; } if (!(dstatus & ATA_SR_BSY)) { break; } } /* Inform device we are done. */ outportb(dev->bar4 + 0x2, inportb(dev->bar4 + 0x02) | 0x04 | 0x02); } static void ata_device_read_sector_atapi_actual(struct ata_device * dev, uint64_t lba, uint8_t * buf) { if (!dev->is_atapi) return; uint16_t bus = dev->io_base; outportb(dev->io_base + ATA_REG_HDDEVSEL, 0xA0 | dev->slave << 4); ata_io_wait(dev); outportb(bus + ATA_REG_FEATURES, 0x00); outportb(bus + ATA_REG_LBA1, dev->atapi_sector_size & 0xFF); outportb(bus + ATA_REG_LBA2, dev->atapi_sector_size >> 8); outportb(bus + ATA_REG_COMMAND, ATA_CMD_PACKET); /* poll */ int timeout = 100; while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if ((status & ATA_SR_ERR)) goto atapi_error_on_read_setup; if (timeout-- < 0) { dprintf("atapi: timeout while waiting for controller to be ready\n"); goto atapi_timeout; } if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRQ)) break; } atapi_command_t command; command.command_bytes[0] = 0xA8; command.command_bytes[1] = 0; command.command_bytes[2] = (lba >> 0x18) & 0xFF; command.command_bytes[3] = (lba >> 0x10) & 0xFF; command.command_bytes[4] = (lba >> 0x08) & 0xFF; command.command_bytes[5] = (lba >> 0x00) & 0xFF; command.command_bytes[6] = 0; command.command_bytes[7] = 0; command.command_bytes[8] = 0; /* bit 0 = PMI (0, last sector) */ command.command_bytes[9] = 1; /* control */ command.command_bytes[10] = 0; command.command_bytes[11] = 0; spin_lock(atapi_cmd_lock); for (int i = 0; i < 6; ++i) { outports(bus, command.command_words[i]); } sleep_on_unlocking(atapi_waiter, &atapi_cmd_lock); while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if ((status & ATA_SR_ERR)) goto atapi_error_on_read_setup; if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRQ)) break; } uint16_t size_to_read = inportb(bus + ATA_REG_LBA2) << 8; size_to_read = size_to_read | inportb(bus + ATA_REG_LBA1); inportsm(bus,buf,size_to_read/2); timeout = 1000; while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if ((status & ATA_SR_ERR)) goto atapi_error_on_read_setup; if (timeout-- < 0) { dprintf("atapi: timeout while waiting for controller to be ready after transaction\n"); goto atapi_timeout; } if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY)) break; } atapi_error_on_read_setup: return; atapi_timeout: return; } static void ata_device_write_sector_actual(struct ata_device * dev, uint64_t lba) { uint16_t bus = dev->io_base; uint8_t slave = dev->slave; ata_wait(dev, 0); outportb(dev->bar4, 0x00); outportl(dev->bar4 + 0x04, dev->dma_prdt_phys); outportb(dev->bar4 + 0x2, inportb(dev->bar4 + 0x02) | 0x04 | 0x02); /* set write */ outportb(dev->bar4, 0x00); while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if (!(status & ATA_SR_BSY)) break; } outportb(bus + ATA_REG_CONTROL, 0x02); outportb(bus + ATA_REG_HDDEVSEL, 0xe0 | slave << 4); ata_wait(dev, 0); outportb(bus + ATA_REG_FEATURES, 0x00); outportb(bus + ATA_REG_SECCOUNT0, 0); outportb(bus + ATA_REG_LBA0, (lba & 0xff000000) >> 24); outportb(bus + ATA_REG_LBA1, (lba & 0xff00000000) >> 32); outportb(bus + ATA_REG_LBA2, (lba & 0xff0000000000) >> 40); outportb(bus + ATA_REG_SECCOUNT0, SECTORS_PER_CACHE_BLOCK); outportb(bus + ATA_REG_LBA0, (lba & 0x000000ff) >> 0); outportb(bus + ATA_REG_LBA1, (lba & 0x0000ff00) >> 8); outportb(bus + ATA_REG_LBA2, (lba & 0x00ff0000) >> 16); while (1) { uint8_t status = inportb(dev->io_base + ATA_REG_STATUS); if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY)) break; } spin_lock(atapi_cmd_lock); outportb(bus + ATA_REG_COMMAND, ATA_CMD_WRITE_DMA_EXT); ata_io_wait(dev); outportb(dev->bar4, 0x00 | 0x01); sleep_on_unlocking(atapi_waiter, &atapi_cmd_lock); #if 0 ata_wait(dev, 0); int size = ATA_SECTOR_SIZE / 2; outportsm(bus,buf,size); #endif outportb(dev->bar4 + 0x2, inportb(dev->bar4 + 0x02) | 0x04 | 0x02); #if 0 outportb(bus + 0x07, ATA_CMD_CACHE_FLUSH); ata_wait(dev, 0); #endif } static void ata_device_read_sector(struct ata_device * dev, uint64_t lba, uint8_t * buf) { lba *= SECTORS_PER_CACHE_BLOCK; /* Is it in the cache? */ mutex_acquire(ata_mutex); int found = 0; int oldest = 0; uint64_t lu = -1; for (int i = 0; i < CACHE_COUNT; ++i) { if (cache_entries[i].dev == dev && cache_entries[i].lba == lba) { //dprintf("ata: cache hit\n"); hit_count++; oldest = i; found = 1; break; } else if (cache_entries[i].dev == NULL) { oldest = i; break; } else if (cache_entries[i].last_use < lu) { oldest = i; lu = cache_entries[oldest].last_use; } } if (!found) { miss_count++; if (cache_entries[oldest].dev && cache_entries[oldest].flags & 1) { eviction_count++; memcpy(cache_entries[oldest].dev->dma_start, cache_blocks + oldest * ATA_CACHE_SIZE, ATA_CACHE_SIZE); ata_device_write_sector_actual(cache_entries[oldest].dev, cache_entries[oldest].lba); } ata_device_read_sector_actual(dev, lba); cache_entries[oldest].dev = dev; cache_entries[oldest].lba = lba; cache_entries[oldest].flags = 0; memcpy(cache_blocks + oldest * ATA_CACHE_SIZE, dev->dma_start, ATA_CACHE_SIZE); } cache_entries[oldest].last_use = counter++; memcpy(buf, cache_blocks + ATA_CACHE_SIZE * oldest, ATA_CACHE_SIZE); mutex_release(ata_mutex); } static void ata_device_write_sector(struct ata_device * dev, uint64_t lba, uint8_t * buf) { lba *= SECTORS_PER_CACHE_BLOCK; mutex_acquire(ata_mutex); int found = 0; int oldest = 0; uint64_t lu = -1; for (int i = 0; i < CACHE_COUNT; ++i) { if (cache_entries[i].dev == dev && cache_entries[i].lba == lba) { //dprintf("ata: cache hit\n"); hit_count++; oldest = i; found = 1; break; } else if (cache_entries[i].dev == NULL) { oldest = i; break; } else if (cache_entries[i].last_use < lu) { oldest = i; lu = cache_entries[oldest].last_use; } } if (!found) { miss_count++; if (cache_entries[oldest].dev && cache_entries[oldest].flags & 1) { eviction_count++; memcpy(cache_entries[oldest].dev->dma_start, cache_blocks + oldest * ATA_CACHE_SIZE, ATA_CACHE_SIZE); ata_device_write_sector_actual(cache_entries[oldest].dev, cache_entries[oldest].lba); } cache_entries[oldest].dev = dev; cache_entries[oldest].lba = lba; } write_count++; cache_entries[oldest].last_use = counter++; memcpy(cache_blocks + oldest * ATA_CACHE_SIZE, buf, ATA_CACHE_SIZE); cache_entries[oldest].flags = 1; mutex_release(ata_mutex); } static void ata_device_read_sector_atapi(struct ata_device * dev, uint64_t lba, uint8_t * buf) { mutex_acquire(ata_mutex); ata_device_read_sector_atapi_actual(dev, lba, buf); mutex_release(ata_mutex); } static int ata_initialize(int argc, char * argv[]) { /* Detect drives and mount them */ /* Locate ATA device via PCI */ pci_scan(&find_ata_pci, -1, &ata_pci); irq_install_handler(14, ata_irq_handler, "ide master"); irq_install_handler(15, ata_irq_handler, "ide slave"); atapi_waiter = list_create("atapi waiter", NULL); cache_entries = malloc(sizeof(struct CacheEntry) * CACHE_COUNT); memset(cache_entries, 0, sizeof(struct CacheEntry) * CACHE_COUNT); cache_blocks = mmu_map_module(CACHE_COUNT * ATA_CACHE_SIZE); ata_mutex = mutex_init("ata lock"); ata_device_detect(&ata_primary_master); ata_device_detect(&ata_primary_slave); ata_device_detect(&ata_secondary_master); ata_device_detect(&ata_secondary_slave); return 0; } static int ata_finalize(void) { return 0; } struct Module metadata = { .name = "ata", .init = ata_initialize, .fini = ata_finalize, };