static mboot_mod_t modules_mboot[sizeof(modules)/sizeof(*modules)] = { {0,0,0,1} }; static struct multiboot multiboot_header = { /* flags; */ MULTIBOOT_FLAG_CMDLINE | MULTIBOOT_FLAG_MODS | MULTIBOOT_FLAG_MEM | MULTIBOOT_FLAG_MMAP, /* mem_lower; */ 0x100000, /* mem_upper; */ 0x640000, /* boot_device; */ 0, /* cmdline; */ 0, /* mods_count; */ sizeof(modules)/sizeof(*modules), /* mods_addr; */ (uintptr_t)&modules_mboot, /* num; */ 0, /* size; */ 0, /* addr; */ 0, /* shndx; */ 0, /* mmap_length; */ 0, /* mmap_addr; */ 0, /* drives_length; */ 0, /* drives_addr; */ 0, /* config_table; */ 0, /* boot_loader_name; */ 0, /* apm_table; */ 0, /* vbe_control_info; */ 0, /* vbe_mode_info; */ 0, /* vbe_mode; */ 0, /* vbe_interface_seg; */ 0, /* vbe_interface_off; */ 0, /* vbe_interface_len; */ 0, }; static long ramdisk_off = 1; static long ramdisk_len = 1; int _eax = 1; int _ebx = 1; int _xmain = 1; struct mmap_entry { uint64_t base; uint64_t len; uint32_t type; uint32_t reserved; }; extern unsigned short mmap_ent; extern unsigned short lower_mem; char * final_offset = NULL; extern char make_it_happen_capn[]; static void move_kernel(void) { clear(); print("Relocating kernel...\n"); Elf32_Header * header = (Elf32_Header *)KERNEL_LOAD_START; if (header->e_ident[0] != ELFMAG0 || header->e_ident[1] != ELFMAG1 || header->e_ident[2] != ELFMAG2 || header->e_ident[3] != ELFMAG3) { print("Kernel is invalid?\n"); } uintptr_t entry = (uintptr_t)header->e_entry; for (uintptr_t x = 0; x < (uint32_t)header->e_phentsize * header->e_phnum; x += header->e_phentsize) { Elf32_Phdr * phdr = (Elf32_Phdr *)((uint8_t*)KERNEL_LOAD_START + header->e_phoff + x); if (phdr->p_type == PT_LOAD) { //read_fs(file, phdr->p_offset, phdr->p_filesz, (uint8_t *)phdr->p_vaddr); print("Loading a Phdr... "); print_hex(phdr->p_vaddr); print(" "); print_hex(phdr->p_offset); print(" "); print_hex(phdr->p_filesz); print("\n"); #ifdef EFI_PLATFORM EFI_PHYSICAL_ADDRESS addr = phdr->p_vaddr; uefi_call_wrapper(ST->BootServices->AllocatePages, 3, AllocateAddress, 0x80000000, phdr->p_memsz / 4096 + 1, &addr); #endif memcpy((uint8_t*)phdr->p_vaddr, (uint8_t*)KERNEL_LOAD_START + phdr->p_offset, phdr->p_filesz); long r = phdr->p_filesz; while (r < phdr->p_memsz) { *(char *)(phdr->p_vaddr + r) = 0; r++; } } } print("Setting up memory map...\n"); #ifdef EFI_PLATFORM mboot_memmap_t * mmap = (void*)KERNEL_LOAD_START; multiboot_header.mmap_addr = (uintptr_t)mmap; mmap->size = 0; mmap->base_addr = 0; mmap->length = 0; mmap->type = 0; multiboot_header.mem_lower = 1024; multiboot_header.mem_upper = 1024 * 512; memcpy(final_offset, cmdline, 1024); multiboot_header.cmdline = (uintptr_t)final_offset; final_offset += 1024; while ((uintptr_t)final_offset & 0x3ff) final_offset++; multiboot_header.mods_addr = (uintptr_t)final_offset; memcpy(final_offset, &modules_mboot, sizeof(modules_mboot)); final_offset += sizeof(modules_mboot); while ((uintptr_t)final_offset & 0x3ff) final_offset++; memcpy(final_offset, &multiboot_header, sizeof(multiboot_header)); _ebx = (uintptr_t)final_offset; print("Jumping to main, good luck.\n"); #else print_hex(mmap_ent); print("\n"); memset((void*)KERNEL_LOAD_START, 0x00, 1024); mboot_memmap_t * mmap = (void*)KERNEL_LOAD_START; multiboot_header.mmap_addr = (uintptr_t)mmap; struct mmap_entry * e820 = (void*)0x5000; uint64_t upper_mem = 0; for (int i = 0; i < mmap_ent; ++i) { print("entry "); print_hex(i); print("\n"); print("base: "); print_hex((uint32_t)e820[i].base); print("\n"); print("type: "); print_hex(e820[i].type); print("\n"); mmap->size = sizeof(uint64_t) * 2 + sizeof(uintptr_t); mmap->base_addr = e820[i].base; mmap->length = e820[i].len; mmap->type = e820[i].type; if (mmap->type == 1 && mmap->base_addr >= 0x100000) { upper_mem += mmap->length; } mmap = (mboot_memmap_t *) ((uintptr_t)mmap + mmap->size + sizeof(uintptr_t)); } print("lower "); print_hex(lower_mem); print("KB\n"); multiboot_header.mem_lower = 1024; print("upper "); print_hex(upper_mem >> 32); print_hex(upper_mem); print("\n"); multiboot_header.mem_upper = upper_mem / 1024; _ebx = (unsigned int)&multiboot_header; #endif _eax = MULTIBOOT_EAX_MAGIC; _xmain = entry; #ifdef EFI_PLATFORM print_("\nExiting boot services and jumping to "); print_hex_(entry); print_(" with mboot_mag="); print_hex_(_eax); print_(" and mboot_ptr="); print_hex_(_ebx); print_("...\n"); if (1) { EFI_STATUS e; UINTN mapSize = 0, mapKey, descriptorSize; UINT32 descriptorVersion; uefi_call_wrapper(ST->BootServices->GetMemoryMap, 5, &mapSize, NULL, &mapKey, &descriptorSize, NULL); e = uefi_call_wrapper(ST->BootServices->ExitBootServices, 2, ImageHandleIn, mapKey); if (e != EFI_SUCCESS) { print_("Exit services failed. \n"); print_hex_(e); } } #endif __asm__ __volatile__ ( "mov %1,%%eax \n" "mov %2,%%ebx \n" "jmp *%0" : : "g"(_xmain), "g"(_eax), "g"(_ebx) : "eax", "ebx" ); } static void do_it(struct ata_device * _device) { device = _device; if (device->atapi_sector_size != 2048) { print_hex(device->atapi_sector_size); print("\n - bad sector size\n"); return; } for (int i = 0x10; i < 0x15; ++i) { ata_device_read_sector_atapi(device, i, (uint8_t *)root); switch (root->type) { case 1: root_sector = i; goto done; case 0xFF: return; } } return; done: restore_root(); if (navigate(kernel_path)) { print("Found kernel.\n"); print_hex(dir_entry->extent_start_LSB); print(" "); print_hex(dir_entry->extent_length_LSB); print("\n"); long offset = 0; for (int i = dir_entry->extent_start_LSB; i < dir_entry->extent_start_LSB + dir_entry->extent_length_LSB / 2048 + 1; ++i, offset += 2048) { #ifdef EFI_PLATFORM EFI_PHYSICAL_ADDRESS addr = KERNEL_LOAD_START + offset; uefi_call_wrapper(ST->BootServices->AllocatePages, 3, AllocateAddress, 0x80000000, 1, &addr); #endif ata_device_read_sector_atapi(device, i, (uint8_t *)KERNEL_LOAD_START + offset); } restore_root(); if (navigate(module_dir)) { memcpy(mod_dir, dir_entry, sizeof(iso_9660_directory_entry_t)); print("Scanning modules...\n"); char ** c = modules; int j = 0; while (*c) { print("load "); print(*c); print("\n"); if (!navigate(*c)) { print("Failed to locate module! ["); print(*c); multiboot_header.mods_count--; print("]\n"); } else { modules_mboot[j].mod_start = KERNEL_LOAD_START + offset; modules_mboot[j].mod_end = KERNEL_LOAD_START + offset + dir_entry->extent_length_LSB; for (int i = dir_entry->extent_start_LSB; i < dir_entry->extent_start_LSB + dir_entry->extent_length_LSB / 2048 + 1; ++i, offset += 2048) { #ifdef EFI_PLATFORM EFI_PHYSICAL_ADDRESS addr = KERNEL_LOAD_START + offset; uefi_call_wrapper(ST->BootServices->AllocatePages, 3, AllocateAddress, 0x80000000, 1, &addr); #endif ata_device_read_sector_atapi(device, i, (uint8_t *)KERNEL_LOAD_START + offset); } j++; } c++; restore_mod(); } print("Done.\n"); restore_root(); if (navigate(ramdisk_path)) { //clear_(); ramdisk_off = KERNEL_LOAD_START + offset; ramdisk_len = dir_entry->extent_length_LSB; modules_mboot[multiboot_header.mods_count-1].mod_start = ramdisk_off; modules_mboot[multiboot_header.mods_count-1].mod_end = ramdisk_off + ramdisk_len; print_("Loading ramdisk"); #ifdef EFI_PLATFORM EFI_PHYSICAL_ADDRESS addr = KERNEL_LOAD_START + offset; uefi_call_wrapper(ST->BootServices->AllocatePages, 3, AllocateAddress, 0x80000000, ramdisk_len / 4096 + 1, &addr); #endif int i = dir_entry->extent_start_LSB; int sectors = dir_entry->extent_length_LSB / 2048 + 1; #define SECTORS 65536 while (sectors >= SECTORS) { print_("."); ata_device_read_sectors_atapi(device, i, (uint8_t *)KERNEL_LOAD_START + offset, SECTORS); sectors -= SECTORS; offset += 2048 * SECTORS; i += SECTORS; } if (sectors > 0) { print_("!"); ata_device_read_sectors_atapi(device, i, (uint8_t *)KERNEL_LOAD_START + offset, sectors); offset += 2048 * sectors; } final_offset = (uint8_t *)KERNEL_LOAD_START + offset; set_attr(0x07); print("Done.\n"); move_kernel(); } } else { print("No mod directory?\n"); } } else { print("boo\n"); } return; } struct fw_cfg_file { uint32_t size; uint16_t select; uint16_t reserved; char name[56]; }; static int boot_mode = 0; void swap_bytes(void * in, int count) { char * bytes = in; if (count == 4) { uint32_t * t = in; *t = (bytes[0] << 24) | (bytes[1] << 12) | (bytes[2] << 8) | bytes[3]; } else if (count == 2) { uint16_t * t = in; *t = (bytes[0] << 8) | bytes[1]; } } void show_menu(void) { #if 1 /* Try to detect qemu headless boot */ outports(0x510, 0x0000); if (inportb(0x511) == 'Q' && inportb(0x511) == 'E' && inportb(0x511) == 'M' && inportb(0x511) == 'U') { uint32_t count = 0; uint8_t * bytes = (uint8_t *)&count; outports(0x510,0x0019); for (int i = 0; i < 4; ++i) { bytes[i] = inportb(0x511); } swap_bytes(&count, 4); #if 0 print_("there are "); print_hex_(count); print_(" entries\n"); #endif unsigned int bootmode_size = 0; int bootmode_index = -1; for (unsigned int i = 0; i < count; ++i) { struct fw_cfg_file file; uint8_t * tmp = (uint8_t *)&file; for (int j = 0; j < sizeof(struct fw_cfg_file); ++j) { tmp[j] = inportb(0x511); } if (!strcmp(file.name,"opt/org.toaruos.bootmode")) { swap_bytes(&file.size, 4); swap_bytes(&file.select, 2); bootmode_size = file.size; bootmode_index = file.select; } #if 0 print_("selector "); print_hex_(file.select); print_(" is "); print_hex_(file.size); print_(" bytes\n"); print_("and its name is: "); print_(file.name); print_("\n"); #endif } if (bootmode_index != -1) { outports(0x510, bootmode_index); char tmp[33] = {0}; for (int i = 0; i < 32 && i < bootmode_size; ++i) { tmp[i] = inportb(0x511); } for (int i = 0; i < BASE_SEL+1; ++i) { if (!strcmp(tmp,boot_mode_names[i].key)) { boot_mode = boot_mode_names[i].index; return; } } print_("fw_cfg boot mode not recognized: "); print_(tmp); print_("\n"); } } #endif /* Determine number of options */ sel_max = 0; while (boot_options[sel_max].value) { sel_max++; } sel_max += BASE_SEL + 1; #ifndef EFI_PLATFORM outportb(0x3D4, 14); outportb(0x3D5, 0xFF); outportb(0x3D4, 15); outportb(0x3D5, 0xFF); inportb(0x3DA); outportb(0x3C0, 0x30); char b = inportb(0x3C1); b &= ~8; outportb(0x3c0, b); #endif clear_(); do { move_cursor(0,0); set_attr(0x1f); print_banner(VERSION_TEXT); set_attr(0x07); print_("\n"); for (int i = 0; i < BASE_SEL+1; ++i) { set_attr(sel == i ? 0x70 : 0x07); print_(" "); char tmp[] = {'0' + (i + 1), '.', ' ', '\0'}; print_(tmp); print_(boot_mode_names[i].title); print_("\n"); } // put a gap set_attr(0x07); print_("\n"); for (int i = 0; i < sel_max - BASE_SEL - 1; ++i) { toggle(BASE_SEL + 1 + i, *boot_options[i].value, boot_options[i].title); } set_attr(0x07); move_cursor(x,17); print_("\n"); print_banner(HELP_TEXT); print_("\n"); if (sel > BASE_SEL) { print_banner(boot_options[sel-BASE_SEL-1].description_1); print_banner(boot_options[sel-BASE_SEL-1].description_2); print_("\n"); } else { print_banner(COPYRIGHT_TEXT); print_("\n"); print_banner(LINK_TEXT); } int s = read_scancode(); if (s == 0x50) { /* DOWN */ if (sel > BASE_SEL && sel < sel_max - 1) { sel = (sel + 2) % sel_max; } else { sel = (sel + 1) % sel_max; } } else if (s == 0x48) { /* UP */ if (sel > BASE_SEL + 1) { sel = (sel_max + sel - 2) % sel_max; } else { sel = (sel_max + sel - 1) % sel_max; } } else if (s == 0x4B) { /* LEFT */ if (sel > BASE_SEL + 1) { sel -= 1; } } else if (s == 0x4D) { /* RIGHT */ if (sel > BASE_SEL) { sel = (sel + 1) % sel_max; } } else if (s == 0x1c) { if (sel <= BASE_SEL) { boot_mode = boot_mode_names[sel].index; break; } else { int index = sel - BASE_SEL - 1; *boot_options[index].value = !*boot_options[index].value; } } else if (s >= 2 && s <= 10) { int i = s - 2; if (i <= BASE_SEL) { boot_mode = boot_mode_names[i].index; break; } #if 0 } else { print_hex_(s); #endif } } while (1); } static void boot(void) { clear_(); multiboot_header.cmdline = (uintptr_t)cmdline; ata_device_detect(&ata_primary_master); ata_device_detect(&ata_primary_slave); ata_device_detect(&ata_secondary_master); ata_device_detect(&ata_secondary_slave); if (ata_primary_master.is_atapi) { do_it(&ata_primary_master); } if (ata_primary_slave.is_atapi) { do_it(&ata_primary_slave); } if (ata_secondary_master.is_atapi) { do_it(&ata_secondary_master); } if (ata_secondary_slave.is_atapi) { do_it(&ata_secondary_slave); } while (1); }