/** * @file kernel/misc/gzip.c * @brief Gzip/DEFLATE decompression. * * Provides decompression for ramdisks. * Based on the same approach to DEFLATE decompression as libraries * like "tinf", this is a slow-but-simple implementation of Huffman * decoding. The kernel version operates directly on two pointers, * @c gzip_inputPtr and @c gzip_outputPtr. For a more robust API, * see the userspace version. * * @copyright * This file is part of ToaruOS and is released under the terms * of the NCSA / University of Illinois License - see LICENSE.md * Copyright (C) 2020-2021 K. Lange */ #include #include static uint8_t bit_buffer = 0; static char buffer_size = 0; uint8_t * gzip_inputPtr = NULL; uint8_t * gzip_outputPtr = NULL; __attribute__((always_inline)) static inline uint8_t read_byte(void) { return *gzip_inputPtr++; } __attribute__((always_inline)) static inline void _write(unsigned int sym) { *gzip_outputPtr++ = sym; } /** * Decoded Huffman table */ struct huff { uint16_t counts[16]; /* Number of symbols of each length */ uint16_t symbols[288]; /* Ordered symbols */ }; /** * Fixed Huffman code tables, generated later. */ struct huff fixed_lengths; struct huff fixed_dists; /** * Read a little-endian short from the input. */ static uint16_t read_16le(void) { uint16_t a, b; a = read_byte(); b = read_byte(); return (a << 0) | (b << 8); } /** * Read a single bit from the source. * Fills the byte buffer with one byte when it runs out. */ static _Bool read_bit(void) { /* When we run out of bits... */ if (buffer_size == 0) { /* Refill from the next input byte */ bit_buffer = read_byte(); /* And restore bit buffer size to 8 bits */ buffer_size = 8; } /* Get the next available bit */ int out = bit_buffer & 1; /* Shift the bit buffer forward */ bit_buffer >>= 1; /* There is now one less bit available */ buffer_size--; return out; } /** * Read multible bits, in bit order, from the source. */ static uint32_t read_bits(unsigned int count) { uint32_t out = 0; for (unsigned int bit = 0; bit < count; bit++) { /* Read one bit at a time, from least to most significant */ out |= (read_bit() << bit); } return out; } /** * Build a Huffman table from an array of lengths. */ static void build_huffman(uint8_t * lengths, size_t size, struct huff * out) { uint16_t offsets[16]; unsigned int count = 0; /* Zero symbol counts */ for (unsigned int i = 0; i < 16; ++i) out->counts[i] = 0; /* Count symbols */ for (unsigned int i = 0; i < size; ++i) out->counts[lengths[i]]++; /* Special case... */ out->counts[0] = 0; /* Figure out offsets */ for (unsigned int i = 0; i < 16; ++i) { offsets[i] = count; count += out->counts[i]; } /* Build symbol ordering */ for (unsigned int i = 0; i < size; ++i) { if (lengths[i]) out->symbols[offsets[lengths[i]]++] = i; } } /** * Build the fixed Huffman tables */ static void build_fixed(void) { /* From 3.2.6: * Lit Value Bits Codes * --------- ---- ----- * 0 - 143 8 00110000 through * 10111111 * 144 - 255 9 110010000 through * 111111111 * 256 - 279 7 0000000 through * 0010111 * 280 - 287 8 11000000 through * 11000111 */ uint8_t lengths[288]; for (int i = 0; i < 144; ++i) lengths[i] = 8; for (int i = 144; i < 256; ++i) lengths[i] = 9; for (int i = 256; i < 280; ++i) lengths[i] = 7; for (int i = 280; i < 288; ++i) lengths[i] = 8; build_huffman(lengths, 288, &fixed_lengths); /* Continued from 3.2.6: * Distance codes 0-31 are represented by (fixed-length) 5-bit * codes, with possible additional bits as shown in the table * shown in Paragraph 3.2.5, above. Note that distance codes 30- * 31 will never actually occur in the compressed data. */ for (int i = 0; i < 30; ++i) lengths[i] = 5; build_huffman(lengths, 30, &fixed_dists); } /** * Decode a symbol from the source using a Huffman table. */ static int decode(struct huff * huff) { int count = 0, cur = 0; for (int i = 1; cur >= 0; i++) { cur = (cur << 1) | read_bit(); /* Shift */ count += huff->counts[i]; cur -= huff->counts[i]; } return huff->symbols[count + cur]; } struct huff_ring { size_t pointer; uint8_t data[32768]; }; static struct huff_ring data = {0, {0}}; /** * Emit one byte to the output, maintaining the ringbuffer. * The ringbuffer ensures we can always look back 32K bytes * while keeping output streaming. */ static void emit(unsigned char byte) { data.data[data.pointer++] = byte; data.pointer &= 0x7FFF; _write(byte); } /** * Look backwards in the output ring buffer. */ static void peek(unsigned int offset) { data.data[data.pointer] = data.data[(data.pointer + 0x8000 - offset) & 0x7FFF]; _write(data.data[data.pointer++]); data.pointer &= 0x7FFF; } /** * Decompress a block of Huffman-encoded data. */ static int inflate(struct huff * huff_len, struct huff * huff_dist) { /* These are the extra bits for lengths from the tables in section 3.2.5 * Extra Extra Extra * Code Bits Length(s) Code Bits Lengths Code Bits Length(s) * ---- ---- ------ ---- ---- ------- ---- ---- ------- * 257 0 3 267 1 15,16 277 4 67-82 * 258 0 4 268 1 17,18 278 4 83-98 * 259 0 5 269 2 19-22 279 4 99-114 * 260 0 6 270 2 23-26 280 4 115-130 * 261 0 7 271 2 27-30 281 5 131-162 * 262 0 8 272 2 31-34 282 5 163-194 * 263 0 9 273 3 35-42 283 5 195-226 * 264 0 10 274 3 43-50 284 5 227-257 * 265 1 11,12 275 3 51-58 285 0 258 * 266 1 13,14 276 3 59-66 */ static const uint16_t lens[] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258 }; static const uint16_t lext[] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; /* Extra bits for distances.... * Extra Extra Extra * Code Bits Dist Code Bits Dist Code Bits Distance * ---- ---- ---- ---- ---- ------ ---- ---- -------- * 0 0 1 10 4 33-48 20 9 1025-1536 * 1 0 2 11 4 49-64 21 9 1537-2048 * 2 0 3 12 5 65-96 22 10 2049-3072 * 3 0 4 13 5 97-128 23 10 3073-4096 * 4 1 5,6 14 6 129-192 24 11 4097-6144 * 5 1 7,8 15 6 193-256 25 11 6145-8192 * 6 2 9-12 16 7 257-384 26 12 8193-12288 * 7 2 13-16 17 7 385-512 27 12 12289-16384 * 8 3 17-24 18 8 513-768 28 13 16385-24576 * 9 3 25-32 19 8 769-1024 29 13 24577-32768 */ static const uint16_t dists[] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577 }; static const uint16_t dext[] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 }; while (1) { unsigned int symbol = decode(huff_len); if (symbol < 256) { emit(symbol); } else if (symbol == 256) { /* "The literal/length symbol 256 (end of data), ..." */ break; } else { unsigned int length, distance, offset; symbol -= 257; length = read_bits(lext[symbol]) + lens[symbol]; distance = decode(huff_dist); offset = read_bits(dext[distance]) + dists[distance]; for (unsigned int i = 0; i < length; ++i) { peek(offset); } } } return 0; } /** * Decode a dynamic Huffman block. */ static void decode_huffman(void) { /* Ordering of code length codes: * (HCLEN + 4) x 3 bits: code lengths for the code length * alphabet given just above, in the order: ... */ static const uint8_t clens[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; unsigned int literals, distances, clengths; uint8_t lengths[320] = {0}; literals = 257 + read_bits(5); /* 5 Bits: HLIT ... 257 */ distances = 1 + read_bits(5); /* 5 Bits: HDIST ... 1 */ clengths = 4 + read_bits(4); /* 4 Bits: HCLEN ... 4 */ /* (HCLEN + 4) x 3 bits... */ for (unsigned int i = 0; i < clengths; ++i) { lengths[clens[i]] = read_bits(3); } struct huff codes; build_huffman(lengths, 19, &codes); /* Decode symbols: * HLIT + 257 code lengths for the literal/length alphabet... * HDIST + 1 code lengths for the distance alphabet... */ unsigned int count = 0; while (count < literals + distances) { int symbol = decode(&codes); int rep = 0, length; switch (symbol) { case 16: /* 16: Copy the previous code length 3-6 times */ rep = lengths[count-1]; length = read_bits(2) + 3; /* The next 2 bits indicate repeat length */ break; case 17: /* Repeat a code length of 0 for 3 - 10 times */ length = read_bits(3) + 3; /* 3 bits of length */ break; case 18: /* Repeat a code length of 0 for 11 - 138 times */ length = read_bits(7) + 11; /* 7 bits of length */ break; default: length = 1; rep = symbol; break; } while (length--) { lengths[count++] = rep; } } /* Build tables from lenghts decoded above */ struct huff huff_len; build_huffman(lengths, literals, &huff_len); struct huff huff_dist; build_huffman(lengths + literals, distances, &huff_dist); inflate(&huff_len, &huff_dist); } /** * Decode an uncompressed block. */ static int uncompressed(void) { /* Reset byte alignment */ bit_buffer = 0; buffer_size = 0; /* "The rest of the block consists of the following information:" * 0 1 2 3 4... * +---+---+---+---+================================+ * | LEN | NLEN |... LEN bytes of literal data...| * +---+---+---+---+================================+ */ uint16_t len = read_16le(); /* "the number of data bytes in the block" */ uint16_t nlen = read_16le(); /* "the one's complement of LEN */ /* Sanity check - does the ones-complement length actually match? */ if ((nlen & 0xFFFF) != (~len & 0xFFFF)) { return 1; } /* Emit LEN bytes from the source to the output */ for (int i = 0; i < len; ++i) { emit(read_byte()); } return 0; } /** * Decompress DEFLATE-compressed data. */ __attribute__((optimize("O2"))) __attribute__((hot)) int deflate_decompress(void) { bit_buffer = 0; buffer_size = 0; build_fixed(); /* read compressed data */ while (1) { /* Read bit */ int is_final = read_bit(); int type = read_bits(2); switch (type) { case 0x00: /* BTYPE=00 Non-compressed blocks */ uncompressed(); break; case 0x01: /* BYTPE=01 Compressed with fixed Huffman codes */ inflate(&fixed_lengths, &fixed_dists); break; case 0x02: /* BTYPE=02 Compression with dynamic Huffman codes */ decode_huffman(); break; case 0x03: return 1; default: __builtin_unreachable(); break; } if (is_final) { break; } } return 0; } #define GZIP_FLAG_TEXT (1 << 0) #define GZIP_FLAG_HCRC (1 << 1) #define GZIP_FLAG_EXTR (1 << 2) #define GZIP_FLAG_NAME (1 << 3) #define GZIP_FLAG_COMM (1 << 4) static unsigned int read_32le(void) { unsigned int a, b, c, d; a = read_byte(); b = read_byte(); c = read_byte(); d = read_byte(); return (d << 24) | (c << 16) | (b << 8) | (a << 0); } int gzip_decompress(void) { /* Read gzip headers */ if (read_byte() != 0x1F) return 1; if (read_byte() != 0x8B) return 1; unsigned int cm = read_byte(); if (cm != 8) return 1; unsigned int flags = read_byte(); /* Read mtime */ unsigned int mtime = read_32le(); (void)mtime; /* Read extra flags */ unsigned int xflags = read_byte(); (void)xflags; /* Read and discord OS flag */ unsigned int os = read_byte(); (void)os; /* Extra bytes */ if (flags & GZIP_FLAG_EXTR) { unsigned short size = read_16le(); for (unsigned int i = 0; i < size; ++i) read_byte(); } if (flags & GZIP_FLAG_NAME) { unsigned int c; while ((c = read_byte()) != 0); } if (flags & GZIP_FLAG_COMM) { unsigned int c; while ((c = read_byte()) != 0); } unsigned int crc16 = 0; if (flags & GZIP_FLAG_HCRC) { crc16 = read_16le(); } (void)crc16; int status = deflate_decompress(); /* Read CRC and decompressed size from end of input */ unsigned int crc32 = read_32le(); unsigned int dsize = read_32le(); (void)crc32; (void)dsize; return status; }