kernel: cleanup things introduced in COW

This commit is contained in:
K. Lange 2021-12-01 09:19:25 +09:00
parent 18174e46de
commit 658ae81f65
2 changed files with 124 additions and 12 deletions

View File

@ -516,13 +516,6 @@ static void _page_fault(struct regs * r) {
if ((r->err_code & 3) == 3) {
/* This is probably a COW page? */
if (faulting_address > 0x800000000000 || faulting_address < 0x30000000) {
panic("Invalid address? Bad write from kernel?", r, faulting_address);
}
if (r->cs == 0x08) {
dprintf("mem: trying to write cow page from kernel\n");
}
extern void mmu_copy_on_write(uintptr_t address);
mmu_copy_on_write(faulting_address);
return;
@ -537,7 +530,6 @@ static void _page_fault(struct regs * r) {
/* Quietly map more stack if it was a viable stack address. */
if (faulting_address < 0x800000000000 && faulting_address > 0x700000000000) {
//dprintf("Map more stack %#zx\n", faulting_address);
map_more_stack(faulting_address & 0xFFFFffffFFFFf000);
return;
}

View File

@ -62,6 +62,13 @@ static uint8_t * mem_refcounts = NULL;
#define INDEX_FROM_BIT(b) ((b) >> 5)
#define OFFSET_FROM_BIT(b) ((b) & 0x1F)
/**
* @brief Mark a physical page frame as in use.
*
* Sets the bitmap allocator bit for a frame.
*
* @param frame_addr Address of the frame (not index!)
*/
void mmu_frame_set(uintptr_t frame_addr) {
/* If the frame is within bounds... */
if (frame_addr < nframes * PAGE_SIZE) {
@ -75,6 +82,13 @@ void mmu_frame_set(uintptr_t frame_addr) {
static uintptr_t lowest_available = 0;
/**
* @brief Mark a physical page frame as available.
*
* Clears the bitmap allocator bit for a frame.
*
* @param frame_addr Address of the frame (not index!)
*/
void mmu_frame_clear(uintptr_t frame_addr) {
/* If the frame is within bounds... */
if (frame_addr < nframes * PAGE_SIZE) {
@ -87,8 +101,14 @@ void mmu_frame_clear(uintptr_t frame_addr) {
}
}
/**
* @brief Determine if a physical page is available for use.
*
* @param frame_addr Address of the frame (not index!)
* @returns 0 if available, 1 otherwise.
*/
int mmu_frame_test(uintptr_t frame_addr) {
if (!(frame_addr < nframes * PAGE_SIZE)) return 0;
if (!(frame_addr < nframes * PAGE_SIZE)) return 1;
uint64_t frame = frame_addr >> PAGE_SHIFT;
uint64_t index = INDEX_FROM_BIT(frame);
uint32_t offset = OFFSET_FROM_BIT(frame);
@ -358,6 +378,17 @@ _noentry:
return NULL;
}
/**
* @brief Increment the reference count for a physical page of memory.
*
* We allow up to 255 references to a page, so that we can track individual
* page reference counts in a big @c uint8_t array. If there are already
* that many references (that's a lot of forks!) we give up and do a regular
* copy of the page and the new copy is writable.
*
* @param frame Physical page index
* @returns 1 if there are already too many references to this page, 0 otherwise.
*/
int refcount_inc(uintptr_t frame) {
if (frame >= nframes) {
arch_fatal_prepare();
@ -370,6 +401,14 @@ int refcount_inc(uintptr_t frame) {
return 0;
}
/**
* @brief Decrement the reference count for a physical page of memory.
*
* Panics if @p frame is invalid or has a zero reference count.
*
* @param frame Physical page index
* @returns the resulting reference count.
*/
uint8_t refcount_dec(uintptr_t frame) {
if (frame >= nframes) {
arch_fatal_prepare();
@ -387,6 +426,22 @@ uint8_t refcount_dec(uintptr_t frame) {
return mem_refcounts[frame];
}
/**
* @brief Handle user pages in mmu_clone
*
* Copies and updates reference counts for pages across forks.
* If a page was writable in the source directory, it will be marked
* read-only and have reference counts initialized for COW.
*
* If a page was already read-only, its reference count will
* be incremented for the new directory.
*
* @param pt_in Existing page table.
* @param pt_out New directory's page table.
* @param l Index into both page tables for this page.
* @param address Virtual address being referenced.
* @returns 0, generally
*/
int copy_page_maybe(union PML * pt_in, union PML * pt_out, size_t l, uintptr_t address) {
/* Can we cow the current page? */
spin_lock(frame_alloc_lock);
@ -434,6 +489,22 @@ int copy_page_maybe(union PML * pt_in, union PML * pt_out, size_t l, uintptr_t a
return 0;
}
/**
* @brief When freeing a directory, handle individual user pages.
*
* If @p pt_in references a writable user page, we know we can
* free it immediately as it is the only reference to that page.
*
* Otherwise, we need to decrement the reference counts for read-only
* pages, as they are shared COW entries. Only if this was the last
* reference (refcount drops to 0) can we then proceed to free the
* underlying page.
*
* @param pt_in Start of page table
* @param l Offset into page table for this page
* @param address Virtual address being freed (was used for debugging)
* @returns 0, generally
*/
int free_page_maybe(union PML * pt_in, size_t l, uintptr_t address) {
if (pt_in[l].bits.writable) {
assert(mem_refcounts[pt_in[l].bits.page] == 0);
@ -783,6 +854,14 @@ extern char end[];
void mmu_init(size_t memsize, uintptr_t firstFreePage) {
this_core->current_pml = (union PML *)&init_page_region[0];
/**
* Enable WP bit, which will cause kernel writes to
* non-writable pages to trigger page faults. We use
* this to perform COW mappings for user processes if
* they passed an unmapped region to a system call, though
* this should be handled by @see mmu_validate_user_pointer
* before we get to that point...
*/
asm volatile (
"movq %%cr0, %%rax\n"
"orq $0x10000, %%rax\n"
@ -981,6 +1060,9 @@ static uintptr_t module_base_address = MODULE_BASE_START;
* yet load the kernel in the -2GiB region... it might also be worthwhile
* to implement some ASLR here, especially given that we're loading
* relocatable ELF object files and can stick them anywhere.
*
* @param size How much space to allocate, will be rounded up to page size.
* @returns Start of the allocated address space.
*/
void * mmu_map_module(size_t size) {
if (size & PAGE_LOW_MASK) {
@ -999,6 +1081,14 @@ void * mmu_map_module(size_t size) {
return out;
}
/**
* @brief Free pages allocated for kernel modules.
*
* This rather blindly unmaps pages.
*
* @param start_address Start of mapping to unmap.
* @param size Size of mapping to unmap.
*/
void mmu_unmap_module(uintptr_t start_address, size_t size) {
if ((size & PAGE_LOW_MASK) || (start_address & PAGE_LOW_MASK)) {
arch_fatal_prepare();
@ -1023,20 +1113,33 @@ void mmu_unmap_module(uintptr_t start_address, size_t size) {
spin_unlock(module_space_lock);
}
/**
* @brief Swap a COW page for a writable copy.
*
* Examines @p address to determine if it is a pending
* COW page that has been marked read-only. If it is,
* it will be exchanged for a writable page. If it is
* the last read-only reference to a page, it will be
* marked writable without introducing a new backing page.
*
* @param address Virtual address that triggered the fault.
* @returns 0 if this was a valid and completed COW operation, 1 otherwise.
*/
int mmu_copy_on_write(uintptr_t address) {
union PML * page = mmu_get_page(address,0);
/* Was this address pending a cow? */
if (!page->bits.cow_pending) {
dprintf("mem: %#zx was not expecting cow action?\n", address);
/* No, go back and trigger and a SIGSEGV */
return 1;
}
spin_lock(frame_alloc_lock);
/* XXX Is this the last reference to this page... */
/* Is this the last reference to this page? */
uint8_t refs = refcount_dec(page->bits.page);
if (refs == 0) {
/* Then we can just mark it writable. */
page->bits.writable = 1;
page->bits.cow_pending = 0;
asm ("" ::: "memory");
@ -1045,14 +1148,17 @@ int mmu_copy_on_write(uintptr_t address) {
return 0;
}
/* Allocate a new writable page */
uintptr_t faulting_frame = page->bits.page;
uintptr_t fresh_frame = mmu_first_frame();
mmu_frame_set(fresh_frame << PAGE_SHIFT);
/* Copy the read-only page into the new writable page */
char * page_in = mmu_map_from_physical(faulting_frame << PAGE_SHIFT);
char * page_out = mmu_map_from_physical(fresh_frame << PAGE_SHIFT);
memcpy(page_out, page_in, 4096);
/* And swap out the page table entry. */
page->bits.page = fresh_frame;
page->bits.writable = 1;
page->bits.cow_pending = 0;
@ -1064,6 +1170,20 @@ int mmu_copy_on_write(uintptr_t address) {
return 0;
}
/**
* @brief Check if the current user process can access address space.
*
* Thoroughly examines page table entries to determine if a user process
* can access the memory at @p addr through @p size bytes.
*
* @p flags can be set to @c MMU_PTR_NULL if @c NULL address should trigger
* a failure, @c MMU_PTR_WRITE if the process must have write access.
*
* @param addr Address to start checking from.
* @param size Size after @p addr to check.
* @param flags Control what constitutes a failure.
* @returns 0 on failure, 1 if process has access.
*/
int mmu_validate_user_pointer(void * addr, size_t size, int flags) {
if (addr == NULL && !(flags & MMU_PTR_NULL)) return 0;
if (size > 0x800000000000) return 0;