toaruos/lib/png.c

509 lines
15 KiB
C
Raw Normal View History

/* vim: tabstop=4 shiftwidth=4 noexpandtab
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2020 K. Lange
*
* libtoaru_png: PNG decoder
*/
#include <stdio.h>
#include <stdlib.h>
#include <toaru/graphics.h>
#include <toaru/inflate.h>
/**
* Read 32-bit big-endian value from file.
*/
unsigned int read_32(FILE * f) {
unsigned char a = fgetc(f);
unsigned char b = fgetc(f);
unsigned char c = fgetc(f);
unsigned char d = fgetc(f);
return (a << 24) | (b << 16) | (c << 8) | d;
}
/**
* Read 16-bit big-endian value from file.
*/
unsigned int read_16(FILE * f) {
unsigned char a = fgetc(f);
unsigned char b = fgetc(f);
return (a << 8) | b;
}
/**
* (Debug) Return a chunk type as a string.
*/
__attribute__((unused))
static char* reorder_type(unsigned int type) {
static char out[4];
out[0] = (type >> 24) & 0xFF;
out[1] = (type >> 16) & 0xFF;
out[2] = (type >> 8) & 0xFF;
out[3] = (type >> 0) & 0xFF;
return out;
}
/**
* Internal PNG decoder state for use with inflate.
*/
struct png_ctx {
FILE * f; /* File being decoded. */
sprite_t * sprite; /* Sprite being generated. */
int y; /* Cursor pointers for writing out bitmap data */
int x;
char buffer[4]; /* A buffer to hold a pixel's worth of data until it can
be written out to the image with the right filter. */
int buf_off; /* How much data is in the above buffer */
int seen_ihdr; /* Whether the IHDR was seen; for error handling */
unsigned int width; /* Image width (dup from sprite) */
unsigned int height; /* Image height (dup from sprite) */
int bit_depth; /* Bit depth of the image */
int color_type; /* PNG color type */
int compression; /* Compression method (must be 0) */
int filter; /* Filter method (must be 0) */
int interlace; /* Interlace method (we only support 0) */
unsigned int size; /* Remaining IDAT chunk size */
int sf; /* Current scanline filter type */
};
/* PNG chunk types */
#define PNG_IHDR 0x49484452
#define PNG_IDAT 0x49444154
#define PNG_IEND 0x49454e44
/* PNG filter types */
#define PNG_FILTER_NONE 0
#define PNG_FILTER_SUB 1
#define PNG_FILTER_UP 2
#define PNG_FILTER_AVG 3
#define PNG_FILTER_PAETH 4
/**
* Read a byte from the IDAT chunk.
* Tracks when an IDAT has been read to completion and
* can load the next IDAT (or bail of this was the last one)
*/
static uint8_t _get(struct inflate_context * ctx) {
struct png_ctx * c = (ctx->input_priv);
if (c->size == 0) {
/* Read the CRC32 from the end of this IDAT */
unsigned int check = read_32(c->f);
(void)check; /* ... and in theory check it... */
/* Read the next IDAT chunk header */
unsigned int size = read_32(c->f);
unsigned int type = read_32(c->f);
c->size = size;
if (type != PNG_IDAT) {
/* This isn't an IDAT? That's wrong! */
fprintf(stderr, "And this is the wrong type (0x%x), I'm just bailing.\n", type);
fprintf(stderr, "size read was 0x%x\n", size);
exit(0);
}
}
/* Read one byte from the input */
c->size--;
int i = fgetc(c->f);
/* If this was EOF, we should handle that error case... probably... */
if (i < 0) fprintf(stderr, "This is probably not good.\n");
return i;
}
/**
* Paeth predictor
* Described in section 6.6 of the RFC
*/
#define ABS(a) ((a >= 0) ? (a) : -(a))
static int paeth(int a, int b, int c) {
int p = a + b - c;
int pa = ABS(p - a);
int pb = ABS(p - b);
int pc = ABS(p - c);
if (pa <= pb && pa <= pc) return a;
else if (pb <= pc) return b;
return c;
}
static void write_pixel(struct png_ctx * c, uint32_t color) {
SPRITE((c->sprite), (c->x), (c->y)) = color;
/* Reset the short buffer */
c->buf_off = 0;
/* Advance to next pixel */
c->x++;
if (c->x == (int)c->width) {
/* Advance to next line; next read is scanline filter type */
c->x = -1;
c->y++;
}
}
static void process_pixel_type_6(struct png_ctx * c) {
/*
* Obtain pixel data from short buffer;
* For color type 6, this is always in R G B A order in the
* bytestream, so we don't have to worry about subpixel ordering
* or weird color masks.
*/
unsigned int r = c->buffer[0];
unsigned int g = c->buffer[1];
unsigned int b = c->buffer[2];
unsigned int a = c->buffer[3];
/* Apply filters */
if (c->sf == PNG_FILTER_SUB) {
/* Add raw value to the pixel on the left */
if (c->x > 0) {
uint32_t left = SPRITE((c->sprite), (c->x - 1), (c->y));
r += _RED(left);
g += _GRE(left);
b += _BLU(left);
a += _ALP(left);
}
} else if (c->sf == PNG_FILTER_UP) {
/* Add raw value to the pixel above */
if (c->y > 0) {
uint32_t up = SPRITE((c->sprite), (c->x), (c->y - 1));
r += _RED(up);
g += _GRE(up);
b += _BLU(up);
a += _ALP(up);
}
} else if (c->sf == PNG_FILTER_AVG) {
/* Add raw value to the average of the pixel above and left */
uint32_t left = (c->x > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y)) : 0;
uint32_t up = (c->y > 0) ? SPRITE((c->sprite), (c->x), (c->y - 1)) : 0;
r += ((int)_RED(left) + (int)_RED(up)) / 2;
g += ((int)_GRE(left) + (int)_GRE(up)) / 2;
b += ((int)_BLU(left) + (int)_BLU(up)) / 2;
a += ((int)_ALP(left) + (int)_ALP(up)) / 2;
} else if (c->sf == PNG_FILTER_PAETH) {
/* Use the Paeth predictor */
uint32_t left = (c->x > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y)) : 0;
uint32_t up = (c->y > 0) ? SPRITE((c->sprite), (c->x), (c->y - 1)) : 0;
uint32_t upleft = (c->x > 0 && c->y > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y - 1)) : 0;
r = ((int)r + paeth((int)_RED(left),(int)_RED(up),(int)_RED(upleft))) % 256;
g = ((int)g + paeth((int)_GRE(left),(int)_GRE(up),(int)_GRE(upleft))) % 256;
b = ((int)b + paeth((int)_BLU(left),(int)_BLU(up),(int)_BLU(upleft))) % 256;
a = ((int)a + paeth((int)_ALP(left),(int)_ALP(up),(int)_ALP(upleft))) % 256;
}
/* Write new pixel to the image */
write_pixel(c, rgba(r,g,b,a));
}
static void process_pixel_type_2(struct png_ctx * c) {
/*
* Obtain pixel data from short buffer;
* For color type 6, this is always in R G B A order in the
* bytestream, so we don't have to worry about subpixel ordering
* or weird color masks.
*/
unsigned int r = c->buffer[0];
unsigned int g = c->buffer[1];
unsigned int b = c->buffer[2];
/* Apply filters */
if (c->sf == PNG_FILTER_SUB) {
/* Add raw value to the pixel on the left */
if (c->x > 0) {
uint32_t left = SPRITE((c->sprite), (c->x - 1), (c->y));
r += _RED(left);
g += _GRE(left);
b += _BLU(left);
}
} else if (c->sf == PNG_FILTER_UP) {
/* Add raw value to the pixel above */
if (c->y > 0) {
uint32_t up = SPRITE((c->sprite), (c->x), (c->y - 1));
r += _RED(up);
g += _GRE(up);
b += _BLU(up);
}
} else if (c->sf == PNG_FILTER_AVG) {
/* Add raw value to the average of the pixel above and left */
uint32_t left = (c->x > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y)) : 0;
uint32_t up = (c->y > 0) ? SPRITE((c->sprite), (c->x), (c->y - 1)) : 0;
r += ((int)_RED(left) + (int)_RED(up)) / 2;
g += ((int)_GRE(left) + (int)_GRE(up)) / 2;
b += ((int)_BLU(left) + (int)_BLU(up)) / 2;
} else if (c->sf == PNG_FILTER_PAETH) {
/* Use the Paeth predictor */
uint32_t left = (c->x > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y)) : 0;
uint32_t up = (c->y > 0) ? SPRITE((c->sprite), (c->x), (c->y - 1)) : 0;
uint32_t upleft = (c->x > 0 && c->y > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y - 1)) : 0;
r = ((int)r + paeth((int)_RED(left),(int)_RED(up),(int)_RED(upleft))) % 256;
g = ((int)g + paeth((int)_GRE(left),(int)_GRE(up),(int)_GRE(upleft))) % 256;
b = ((int)b + paeth((int)_BLU(left),(int)_BLU(up),(int)_BLU(upleft))) % 256;
}
/* Write new pixel to the image */
write_pixel(c, rgb(r,g,b));
}
static void process_pixel_type_4(struct png_ctx * c) {
/*
* Obtain pixel data from short buffer;
* For color type 6, this is always in R G B A order in the
* bytestream, so we don't have to worry about subpixel ordering
* or weird color masks.
*/
unsigned int b = c->buffer[0];
unsigned int a = c->buffer[1];
/* Apply filters */
if (c->sf == PNG_FILTER_SUB) {
/* Add raw value to the pixel on the left */
if (c->x > 0) {
uint32_t left = SPRITE((c->sprite), (c->x - 1), (c->y));
b += _BLU(left);
a += _ALP(left);
}
} else if (c->sf == PNG_FILTER_UP) {
/* Add raw value to the pixel above */
if (c->y > 0) {
uint32_t up = SPRITE((c->sprite), (c->x), (c->y - 1));
b += _BLU(up);
a += _ALP(up);
}
} else if (c->sf == PNG_FILTER_AVG) {
/* Add raw value to the average of the pixel above and left */
uint32_t left = (c->x > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y)) : 0;
uint32_t up = (c->y > 0) ? SPRITE((c->sprite), (c->x), (c->y - 1)) : 0;
b += ((int)_BLU(left) + (int)_BLU(up)) / 2;
a += ((int)_ALP(left) + (int)_ALP(up)) / 2;
} else if (c->sf == PNG_FILTER_PAETH) {
/* Use the Paeth predictor */
uint32_t left = (c->x > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y)) : 0;
uint32_t up = (c->y > 0) ? SPRITE((c->sprite), (c->x), (c->y - 1)) : 0;
uint32_t upleft = (c->x > 0 && c->y > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y - 1)) : 0;
b = ((int)b + paeth((int)_BLU(left),(int)_BLU(up),(int)_BLU(upleft))) % 256;
a = ((int)a + paeth((int)_ALP(left),(int)_ALP(up),(int)_ALP(upleft))) % 256;
}
/* Write new pixel to the image */
write_pixel(c, rgba(b,b,b,a));
}
static void process_pixel_type_0(struct png_ctx * c) {
unsigned int b = c->buffer[0];
if (c->sf == PNG_FILTER_SUB) {
if (c->x > 0) {
uint32_t left = SPRITE((c->sprite), (c->x - 1), (c->y));
b += _BLU(left);
}
} else if (c->sf == PNG_FILTER_UP) {
if (c->y > 0) {
uint32_t up = SPRITE((c->sprite), (c->x), (c->y - 1));
b += _BLU(up);
}
} else if (c->sf == PNG_FILTER_AVG) {
uint32_t left = (c->x > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y)) : 0;
uint32_t up = (c->y > 0) ? SPRITE((c->sprite), (c->x), (c->y - 1)) : 0;
b += ((int)_BLU(left) + (int)_BLU(up)) / 2;
} else if (c->sf == PNG_FILTER_PAETH) {
uint32_t left = (c->x > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y)) : 0;
uint32_t up = (c->y > 0) ? SPRITE((c->sprite), (c->x), (c->y - 1)) : 0;
uint32_t upleft = (c->x > 0 && c->y > 0) ? SPRITE((c->sprite), (c->x - 1), (c->y - 1)) : 0;
b = ((int)b + paeth((int)_BLU(left),(int)_BLU(up),(int)_BLU(upleft))) % 256;
}
/* Write new pixel to the image */
write_pixel(c, rgb(b,b,b));
}
/**
* Handle decompressed output from the inflater
*
* Writes pixel data to the image, and applies relevant filters.
*/
static void _write(struct inflate_context * ctx, unsigned int sym) {
struct png_ctx * c = (ctx->input_priv);
/* Put this byte into the short buffer */
c->buffer[c->buf_off] = sym;
c->buf_off++;
/* If this is the beginning of a scanline... */
if (c->x == -1 && c->buf_off == 1) {
/* Then this is the scanline filter type */
c->sf = sym;
/* Reset the buffer, advance to the beginning of the actual scanline */
c->x = 0;
c->buf_off = 0;
} else if (c->buf_off == 1 && c->color_type == 0) {
process_pixel_type_0(c);
} else if (c->buf_off == 2 && c->color_type == 4) {
process_pixel_type_4(c);
} else if (c->buf_off == 3 && c->color_type == 2) {
process_pixel_type_2(c);
} else if (c->buf_off == 4 && c->color_type == 6) {
process_pixel_type_6(c);
}
}
static int color_type_has_alpha(int c) {
switch (c) {
case 4:
case 6:
return ALPHA_EMBEDDED;
default:
return 0;
}
}
int load_sprite_png(sprite_t * sprite, char * filename) {
FILE * f = fopen(filename,"r");
if (!f) {
fprintf(stderr, "Failed to open file %s\n", filename);
return 1;
}
/* Read the PNG signature */
unsigned char sig[] = {137, 80, 78, 71, 13, 10, 26, 10};
for (int i = 0; i < 8; ++i) {
unsigned char c = fgetc(f);
if (c != sig[i]) {
fprintf(stderr, "byte %d (%d) does not match expected (%d)\n", i, c, sig[i]);
goto _error;
}
}
/* Set up context for future calls to inflate */
struct png_ctx c;
c.sprite = sprite;
c.x = -1;
c.y = 0;
c.f = f;
c.buf_off = 0;
c.seen_ihdr = 0;
while (1) {
/* read chunks */
unsigned int size = read_32(f);
unsigned int type = read_32(f);
if (feof(f)) break;
switch (type) {
case PNG_IHDR:
{
/* Image should only have one IHDR */
if (c.seen_ihdr) return 1;
c.seen_ihdr = 1;
c.width = read_32(f); /* 4 */
c.height = read_32(f); /* 8 */
c.bit_depth = fgetc(f); /* 9 */
c.color_type = fgetc(f); /* 10 */
c.compression = fgetc(f); /* 11 */
c.filter = fgetc(f); /* 12 */
c.interlace = fgetc(f); /* 13 */
/* Invalid / non-standard compression and filter types */
if (c.compression != 0) return 1;
if (c.filter != 0) return 1;
/* 0 for none, 1 for Adam7 */
if (c.interlace != 0 && c.interlace != 1) return 1;
if (c.bit_depth != 8) return 1; /* Sorry */
if (c.color_type < 0 || c.color_type > 6 || (c.color_type & 1)) return 1; /* Sorry, no indexed support */
/* Allocate space */
sprite->width = c.width;
sprite->height = c.height;
sprite->bitmap = malloc(sizeof(uint32_t) * sprite->width * sprite->height);
sprite->masks = NULL;
sprite->alpha = color_type_has_alpha(c.color_type);
sprite->blank = 0;
/* Skip */
for (unsigned int i = 13; i < size; ++i) fgetc(f);
}
break;
case PNG_IDAT:
{
/* First two bytes of IDAT data are ZLIB header */
unsigned int cflags = fgetc(f);
if ((cflags & 0xF) != 8) {
/* Compression type must be 8 */
fprintf(stderr, "Expected flags to be 8 but it's 0x%x\n", cflags);
return 1;
}
unsigned int aflags = fgetc(f);
if (aflags & (1 << 5)) {
fprintf(stderr, "There are preset bytes and I don't know what to do.\n");
return 1;
}
struct inflate_context ctx;
ctx.input_priv = &c;
ctx.output_priv = &c;
ctx.get_input = _get;
ctx.write_output = _write;
ctx.ring = NULL; /* use builtin */
c.size = size - 2; /* 2 for the bytes we already read */
deflate_decompress(&ctx);
/* The IDATs contain a ZLIB stream, so they end with an
* adler32 checksum. Skip that. */
unsigned int adler = read_32(f);
(void)adler;
}
break;
case PNG_IEND:
/* We don't actually have anything to do here. */
break;
default:
/* IHDR must be first */
if (!c.seen_ihdr) return 1;
//fprintf(stderr, "I don't know what this is! %4s 0x%x\n", reorder_type(type), type);
/* Skip */
for (unsigned int i = 0; i < size; ++i) fgetc(f);
break;
}
unsigned int crc32 = read_32(f);
(void)crc32;
}
/*
* Data in PNGs is unpremultiplied, but our sprites expect
* premultiplied alpha, so convert the image data
*/
for (int y = 0; y < sprite->height; ++y) {
for (int x = 0; x < sprite->width; ++x) {
SPRITE(sprite,x,y) = premultiply(SPRITE(sprite,x,y));
}
}
return 0;
_error:
fclose(f);
return 1;
}