toaruos/modules/e1000.c

427 lines
12 KiB
C
Raw Normal View History

2017-01-20 18:24:12 +03:00
/* vim: tabstop=4 shiftwidth=4 noexpandtab
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2017 Kevin Lange
*/
#include <module.h>
#include <logging.h>
#include <printf.h>
#include <pci.h>
#include <mem.h>
#include <list.h>
#include <pipe.h>
#include <ipv4.h>
#include <mod/net.h>
static uint32_t e1000_device_pci = 0x00000000;
static int e1000_irq = 0;
static uintptr_t mem_base = 0;
static int has_eeprom = 0;
static uint8_t mac[6];
static int rx_index = 0;
static int tx_index = 0;
static list_t * net_queue = NULL;
static spin_lock_t net_queue_lock = { 0 };
static list_t * rx_wait;
static uint32_t mmio_read32(uintptr_t addr) {
return *((volatile uint32_t*)(addr));
}
static void mmio_write32(uintptr_t addr, uint32_t val) {
(*((volatile uint32_t*)(addr))) = val;
}
static void write_command(uint16_t addr, uint32_t val) {
mmio_write32(mem_base + addr, val);
}
static uint32_t read_command(uint16_t addr) {
return mmio_read32(mem_base + addr);
}
#define E1000_NUM_RX_DESC 32
#define E1000_NUM_TX_DESC 8
struct rx_desc {
volatile uint64_t addr;
volatile uint16_t length;
volatile uint16_t checksum;
volatile uint8_t status;
volatile uint8_t errors;
volatile uint16_t special;
} __attribute__((packed)); /* this looks like it should pack fine as-is */
struct tx_desc {
volatile uint64_t addr;
volatile uint16_t length;
volatile uint8_t cso;
volatile uint8_t cmd;
volatile uint8_t status;
volatile uint8_t css;
volatile uint16_t special;
} __attribute__((packed));
static uint8_t * rx_virt[E1000_NUM_RX_DESC];
static uint8_t * tx_virt[E1000_NUM_TX_DESC];
static struct rx_desc * rx;
static struct tx_desc * tx;
static void enqueue_packet(void * buffer) {
spin_lock(net_queue_lock);
list_insert(net_queue, buffer);
spin_unlock(net_queue_lock);
}
static struct ethernet_packet * dequeue_packet(void) {
while (!net_queue->length) {
sleep_on(rx_wait);
}
spin_lock(net_queue_lock);
node_t * n = list_dequeue(net_queue);
void* value = n->value;
free(n);
spin_unlock(net_queue_lock);
return value;
}
static uint8_t* get_mac() {
return mac;
}
#define E1000_REG_CTRL 0x0000
#define E1000_REG_STATUS 0x0008
#define E1000_REG_EEPROM 0x0014
#define E1000_REG_CTRL_EXT 0x0018
#define E1000_REG_RCTRL 0x0100
#define E1000_REG_RXDESCLO 0x2800
#define E1000_REG_RXDESCHI 0x2804
#define E1000_REG_RXDESCLEN 0x2808
#define E1000_REG_RXDESCHEAD 0x2810
#define E1000_REG_RXDESCTAIL 0x2818
#define E1000_REG_TCTRL 0x0400
#define E1000_REG_TXDESCLO 0x3800
#define E1000_REG_TXDESCHI 0x3804
#define E1000_REG_TXDESCLEN 0x3808
#define E1000_REG_TXDESCHEAD 0x3810
#define E1000_REG_TXDESCTAIL 0x3818
#define RCTL_EN (1 << 1) /* Receiver Enable */
#define RCTL_SBP (1 << 2) /* Store Bad Packets */
#define RCTL_UPE (1 << 3) /* Unicast Promiscuous Enabled */
#define RCTL_MPE (1 << 4) /* Multicast Promiscuous Enabled */
#define RCTL_LPE (1 << 5) /* Long Packet Reception Enable */
#define RCTL_LBM_NONE (0 << 6) /* No Loopback */
#define RCTL_LBM_PHY (3 << 6) /* PHY or external SerDesc loopback */
#define RTCL_RDMTS_HALF (0 << 8) /* Free Buffer Threshold is 1/2 of RDLEN */
#define RTCL_RDMTS_QUARTER (1 << 8) /* Free Buffer Threshold is 1/4 of RDLEN */
#define RTCL_RDMTS_EIGHTH (2 << 8) /* Free Buffer Threshold is 1/8 of RDLEN */
#define RCTL_MO_36 (0 << 12) /* Multicast Offset - bits 47:36 */
#define RCTL_MO_35 (1 << 12) /* Multicast Offset - bits 46:35 */
#define RCTL_MO_34 (2 << 12) /* Multicast Offset - bits 45:34 */
#define RCTL_MO_32 (3 << 12) /* Multicast Offset - bits 43:32 */
#define RCTL_BAM (1 << 15) /* Broadcast Accept Mode */
#define RCTL_VFE (1 << 18) /* VLAN Filter Enable */
#define RCTL_CFIEN (1 << 19) /* Canonical Form Indicator Enable */
#define RCTL_CFI (1 << 20) /* Canonical Form Indicator Bit Value */
#define RCTL_DPF (1 << 22) /* Discard Pause Frames */
#define RCTL_PMCF (1 << 23) /* Pass MAC Control Frames */
#define RCTL_SECRC (1 << 26) /* Strip Ethernet CRC */
#define RCTL_BSIZE_256 (3 << 16)
#define RCTL_BSIZE_512 (2 << 16)
#define RCTL_BSIZE_1024 (1 << 16)
#define RCTL_BSIZE_2048 (0 << 16)
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
#define TCTL_EN (1 << 1) /* Transmit Enable */
#define TCTL_PSP (1 << 3) /* Pad Short Packets */
#define TCTL_CT_SHIFT 4 /* Collision Threshold */
#define TCTL_COLD_SHIFT 12 /* Collision Distance */
#define TCTL_SWXOFF (1 << 22) /* Software XOFF Transmission */
#define TCTL_RTLC (1 << 24) /* Re-transmit on Late Collision */
#define CMD_EOP (1 << 0) /* End of Packet */
#define CMD_IFCS (1 << 1) /* Insert FCS */
#define CMD_IC (1 << 2) /* Insert Checksum */
#define CMD_RS (1 << 3) /* Report Status */
#define CMD_RPS (1 << 4) /* Report Packet Sent */
#define CMD_VLE (1 << 6) /* VLAN Packet Enable */
#define CMD_IDE (1 << 7) /* Interrupt Delay Enable */
static int eeprom_detect(void) {
write_command(E1000_REG_EEPROM, 1);
for (int i = 0; i < 100000 && !has_eeprom; ++i) {
uint32_t val = read_command(E1000_REG_EEPROM);
if (val & 0x10) has_eeprom = 1;
}
return 0;
}
static uint16_t eeprom_read(uint8_t addr) {
uint32_t temp = 0;
write_command(E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
while (!((temp = read_command(E1000_REG_EEPROM)) & (1 << 4)));
return (uint16_t)((temp >> 16) & 0xFFFF);
}
//static list_t * net_queue = NULL;
//static spin_lock_t net_queue_lock = { 0 };
//static list_t * rx_wait;
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
if ((vendorid == 0x8086) && (deviceid == 0x100e)) {
*((uint32_t *)extra) = device;
}
}
static void read_mac(void) {
if (has_eeprom) {
uint32_t t;
t = eeprom_read(0);
mac[0] = t & 0xFF;
mac[1] = t >> 8;
t = eeprom_read(1);
mac[2] = t & 0xFF;
mac[3] = t >> 8;
t = eeprom_read(2);
mac[4] = t & 0xFF;
mac[5] = t >> 8;
} else {
uint8_t * mac_addr = (uint8_t *)(mem_base + 0x5400);
for (int i = 0; i < 6; ++i) {
mac[i] = mac_addr[i];
}
}
}
static int irq_handler(struct regs *r) {
uint32_t status = read_command(0xc0);
irq_ack(e1000_irq);
if (!status) return 0;
if (status & 0x04) {
/* Start link */
debug_print(NOTICE, "start link");
} else if (status & 0x10) {
/* ?? */
} else if (status & ((1 << 6) | (1 << 7))) {
/* receive packet */
do {
rx_index = read_command(E1000_REG_RXDESCTAIL);
if (rx_index == (int)read_command(E1000_REG_RXDESCHEAD)) return 1;
rx_index = (rx_index + 1) % E1000_NUM_RX_DESC;
if (rx[rx_index].status & 0x01) {
uint8_t * pbuf = (uint8_t *)rx_virt[rx_index];
uint16_t plen = rx[rx_index].length;
void * packet = malloc(plen);
memcpy(packet, pbuf, plen);
rx[rx_index].status = 0;
enqueue_packet(packet);
write_command(E1000_REG_RXDESCTAIL, rx_index);
} else {
break;
2017-01-20 18:24:12 +03:00
}
} while (1);
wakeup_queue(rx_wait);
2017-01-20 18:24:12 +03:00
}
return 1;
}
static void send_packet(uint8_t* payload, size_t payload_size) {
tx_index = read_command(E1000_REG_TXDESCTAIL);
memcpy(tx_virt[tx_index], payload, payload_size);
tx[tx_index].length = payload_size;
tx[tx_index].cmd = CMD_EOP | CMD_IFCS | CMD_RS; //| CMD_RPS;
tx[tx_index].status = 0;
tx_index = (tx_index + 1) % E1000_NUM_TX_DESC;
write_command(E1000_REG_TXDESCTAIL, tx_index);
}
static void init_rx(void) {
uintptr_t phys;
rx = (void*)kvmalloc_p(sizeof(struct rx_desc) * E1000_NUM_RX_DESC + 16, &phys);
for (int i = 0; i < E1000_NUM_RX_DESC; ++i) {
rx_virt[i] = (void*)kvmalloc_p(8192 + 16, (uint32_t *)&rx[i].addr);
rx[i].status = 0;
}
write_command(E1000_REG_RXDESCLO, phys);
write_command(E1000_REG_RXDESCHI, 0);
write_command(E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct rx_desc));
write_command(E1000_REG_RXDESCHEAD, 0);
write_command(E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
rx_index = 0;
write_command(E1000_REG_RCTRL,
RCTL_EN |
(read_command(E1000_REG_RCTRL) & (~((1 << 17) | (1 << 16)))));
}
static void init_tx(void) {
uintptr_t phys;
tx = (void*)kvmalloc_p(sizeof(struct tx_desc) * E1000_NUM_TX_DESC + 16, &phys);
for (int i = 0; i < E1000_NUM_TX_DESC; ++i) {
tx_virt[i] = (void*)kvmalloc_p(8192, (uint32_t *)&tx[i].addr);
debug_print(WARNING, "tx[%d] 0x%x → 0x%x", i, tx_virt[i], (uint32_t)tx[i].addr);
tx[i].status = 0;
tx[i].cmd = (1 << 0);
}
write_command(E1000_REG_TXDESCLO, phys);
write_command(E1000_REG_TXDESCHI, 0);
write_command(E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct tx_desc));
write_command(E1000_REG_TXDESCHEAD, 0);
write_command(E1000_REG_TXDESCTAIL, 0);
tx_index = 0;
write_command(E1000_REG_TCTRL,
TCTL_EN |
TCTL_PSP |
read_command(E1000_REG_TCTRL));
}
static void e1000_init(void * data, char * name) {
/* This seems to always be memory mapped on important devices. */
mem_base = pci_read_field(e1000_device_pci, PCI_BAR0, 4) & 0xFFFFFFF0;
for (size_t x = 0; x < 0x10000; x += 0x1000) {
uintptr_t addr = (mem_base & 0xFFFFF000) + x;
dma_frame(get_page(addr, 1, kernel_directory), 0, 1, addr);
}
#if 1
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
if (command_reg & (1 << 2)) {
debug_print(NOTICE, "Bus mastering already enabled.\n");
}
command_reg |= (1 << 2);
command_reg |= (1 << 0);
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
#endif
debug_print(NOTICE, "mem base: 0x%x", mem_base);
eeprom_detect();
debug_print(NOTICE, "has_eeprom = %d", has_eeprom);
read_mac();
debug_print(NOTICE, "device mac %2x:%2x:%2x:%2x:%2x:%2x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
/* initialize */
write_command(E1000_REG_CTRL, (1 << 26));
/* wait */
unsigned long s, ss;
relative_time(0, 10, &s, &ss);
sleep_until((process_t *)current_process, s, ss);
switch_task(0);
debug_print(NOTICE, "back from sleep");
/* setup */
write_command(E1000_REG_CTRL, (1 << 5) | (1 << 6));
uint32_t status = read_command(E1000_REG_CTRL);
status &= ~(1 << 3);
status &= ~(1 << 31);
status &= ~(1 << 7);
write_command(E1000_REG_CTRL, status);
write_command(0x0028, 0);
write_command(0x002c, 0);
write_command(0x0030, 0);
write_command(0x0170, 0);
status = read_command(E1000_REG_CTRL);
status &= ~(1 << 30);
write_command(E1000_REG_CTRL, status);
net_queue = list_create();
rx_wait = list_create();
e1000_irq = pci_read_field(e1000_device_pci, PCI_INTERRUPT_LINE, 1);
irq_install_handler(e1000_irq, irq_handler);
debug_print(NOTICE, "Binding interrupt %d", e1000_irq);
for (int i = 0; i < 128; ++i) {
write_command(0x5200 + i * 4, 0);
}
for (int i = 0; i < 64; ++i) {
write_command(0x4000 + i * 4, 0);
}
#if 0
write_command(0x5400, *(uint32_t*)(&mac[0]));
write_command(0x5404, *(uint16_t*)(&mac[4]));
write_command(0x5404, read_command(0x5404) | (1 << 31));
#endif
write_command(E1000_REG_RCTRL, (1 << 4));
init_rx();
init_tx();
//write_command(0x00D0, read_command(0x00D0) | (1 << 2) | (1 << 6) | (1 << 7) | (1 << 1) | (1 << 0));
write_command(0x00D0, 0xFF);
read_command(0xc0);
init_netif_funcs(get_mac, dequeue_packet, send_packet, "Intel E1000");
2017-01-20 18:24:12 +03:00
create_kernel_tasklet(net_handler, "[eth]", NULL);
}
static int init(void) {
pci_scan(&find_e1000, -1, &e1000_device_pci);
if (!e1000_device_pci) {
debug_print(WARNING, "No e1000 device found.");
return 1;
}
create_kernel_tasklet(e1000_init, "[e1000]", NULL);
return 0;
}
static int fini(void) {
return 0;
}
MODULE_DEF(e1000, init, fini);
MODULE_DEPENDS(net);