toaruos/kernel/arch/x86_64/cmos.c

249 lines
5.8 KiB
C
Raw Normal View History

2021-05-31 04:47:02 +03:00
/**
* @file kernel/arch/x86_64/cmos.c
* @author K. Lange
* @brief Real-time clock.
*
* Provides access to the CMOS RTC for initial boot time and
* calibrates the TSC to use as a general timing source. IRQ 0
* handler is also in here because it updates the wall clock time
* and triggers timeout-based wakeups.
*/
#include <kernel/printf.h>
#include <kernel/string.h>
#include <kernel/process.h>
#include <kernel/arch/x86_64/ports.h>
#include <kernel/arch/x86_64/irq.h>
#include <sys/time.h>
#define from_bcd(val) ((val / 16) * 10 + (val & 0xf))
#define CMOS_ADDRESS 0x70
#define CMOS_DATA 0x71
enum {
CMOS_SECOND = 0,
CMOS_MINUTE = 2,
CMOS_HOUR = 4,
CMOS_DAY = 7,
CMOS_MONTH = 8,
CMOS_YEAR = 9
};
static void cmos_dump(uint16_t * values) {
for (uint16_t index = 0; index < 128; ++index) {
outportb(CMOS_ADDRESS, index);
values[index] = inportb(CMOS_DATA);
}
}
static int is_update_in_progress(void) {
outportb(CMOS_ADDRESS, 0x0a);
return inportb(CMOS_DATA) & 0x80;
}
static uint32_t secs_of_years(int years) {
uint32_t days = 0;
years += 2000;
while (years > 1969) {
days += 365;
if (years % 4 == 0) {
if (years % 100 == 0) {
if (years % 400 == 0) {
days++;
}
} else {
days++;
}
}
years--;
}
return days * 86400;
}
static uint32_t secs_of_month(int months, int year) {
year += 2000;
uint32_t days = 0;
switch(months) {
case 11:
days += 30; /* fallthrough */
case 10:
days += 31; /* fallthrough */
case 9:
days += 30; /* fallthrough */
case 8:
days += 31; /* fallthrough */
case 7:
days += 31; /* fallthrough */
case 6:
days += 30; /* fallthrough */
case 5:
days += 31; /* fallthrough */
case 4:
days += 30; /* fallthrough */
case 3:
days += 31; /* fallthrough */
case 2:
days += 28;
if ((year % 4 == 0) && ((year % 100 != 0) || (year % 400 == 0))) {
days++;
} /* fallthrough */
case 1:
days += 31; /* fallthrough */
default:
break;
}
return days * 86400;
}
uint32_t read_cmos(void) {
uint16_t values[128];
uint16_t old_values[128];
while (is_update_in_progress());
cmos_dump(values);
do {
memcpy(old_values, values, 128);
while (is_update_in_progress());
cmos_dump(values);
} while ((old_values[CMOS_SECOND] != values[CMOS_SECOND]) ||
(old_values[CMOS_MINUTE] != values[CMOS_MINUTE]) ||
(old_values[CMOS_HOUR] != values[CMOS_HOUR]) ||
(old_values[CMOS_DAY] != values[CMOS_DAY]) ||
(old_values[CMOS_MONTH] != values[CMOS_MONTH]) ||
(old_values[CMOS_YEAR] != values[CMOS_YEAR]));
/* Math Time */
uint32_t time =
secs_of_years(from_bcd(values[CMOS_YEAR]) - 1) +
secs_of_month(from_bcd(values[CMOS_MONTH]) - 1,
from_bcd(values[CMOS_YEAR])) +
(from_bcd(values[CMOS_DAY]) - 1) * 86400 +
(from_bcd(values[CMOS_HOUR])) * 3600 +
(from_bcd(values[CMOS_MINUTE])) * 60 +
from_bcd(values[CMOS_SECOND]) + 0;
return time;
}
static uint64_t boot_time = 0;
uint64_t timer_ticks = 0;
uint64_t timer_subticks = 0;
unsigned long tsc_mhz = 3500; /* XXX */
static inline uint64_t read_tsc(void) {
uint32_t lo, hi;
asm volatile ( "rdtsc" : "=a"(lo), "=d"(hi) );
return ((uint64_t)hi << 32) | (uint64_t)lo;
}
size_t arch_cpu_mhz(void) {
return tsc_mhz;
}
void arch_clock_initialize(void) {
boot_time = read_cmos();
uintptr_t end_lo, end_hi;
uint32_t start_lo, start_hi;
asm volatile (
/* Disables and sets gating for channel 2 */
"inb $0x61, %%al\n"
"andb $0xDD, %%al\n"
"orb $0x01, %%al\n"
"outb %%al, $0x61\n"
/* Configure channel 2 to one-shot, next two bytes are low/high */
"movb $0xB2, %%al\n" /* 0b10110010 */
"outb %%al, $0x43\n"
/* 0x__9b */
"movb $0x9B, %%al\n"
"outb %%al, $0x42\n"
"inb $0x60, %%al\n"
/* 0x2e__ */
"movb $0x2E, %%al\n"
"outb %%al, $0x42\n"
/* Re-enable */
"inb $0x61, %%al\n"
"andb $0xDE, %%al\n"
"outb %%al, $0x61\n"
/* Pulse high */
"orb $0x01, %%al\n"
"outb %%al, $0x61\n"
/* Read TSC and store in vars */
"rdtsc\n"
"movl %%eax, %2\n"
"movl %%edx, %3\n"
/* In QEMU and VirtualBox, this seems to flip low.
* On real hardware and VMware it flips high. */
"inb $0x61, %%al\n"
"andb $0x20, %%al\n"
"jz 2f\n"
/* Loop until output goes low? */
"1:\n"
"inb $0x61, %%al\n"
"andb $0x20, %%al\n"
"jnz 1b\n"
"rdtsc\n"
"jmp 3f\n"
/* Loop until output goes high */
"2:\n"
"inb $0x61, %%al\n"
"andb $0x20, %%al\n"
"jz 2b\n"
"rdtsc\n"
"3:\n"
: "=a"(end_lo), "=d"(end_hi), "=r"(start_lo), "=r"(start_hi)
);
uintptr_t end = ((end_hi & 0xFFFFffff) << 32) | (end_lo & 0xFFFFffff);
uintptr_t start = ((uintptr_t)(start_hi & 0xFFFFffff) << 32) | (start_lo & 0xFFFFffff);
tsc_mhz = (end - start) / 10000;
if (tsc_mhz == 0) tsc_mhz = 2000; /* uh oh */
}
#define SUBTICKS_PER_TICK 1000000
static void update_ticks(void) {
uint64_t tsc = read_tsc();
timer_subticks = tsc / tsc_mhz;
timer_ticks = timer_subticks / SUBTICKS_PER_TICK;
timer_subticks = timer_subticks % SUBTICKS_PER_TICK;
}
int gettimeofday(struct timeval * t, void *z) {
update_ticks();
t->tv_sec = boot_time + timer_ticks;
t->tv_usec = timer_subticks;
return 0;
}
uint64_t now(void) {
struct timeval t;
gettimeofday(&t, NULL);
return t.tv_sec;
}
void relative_time(unsigned long seconds, unsigned long subseconds, unsigned long * out_seconds, unsigned long * out_subseconds) {
update_ticks();
if (subseconds + timer_subticks >= SUBTICKS_PER_TICK) {
*out_seconds = timer_ticks + seconds + (subseconds + timer_subticks) / SUBTICKS_PER_TICK;
*out_subseconds = (subseconds + timer_subticks) % SUBTICKS_PER_TICK;
} else {
*out_seconds = timer_ticks + seconds;
*out_subseconds = timer_subticks + subseconds;
}
}
int cmos_time_stuff(struct regs *r) {
update_ticks();
wakeup_sleepers(timer_ticks, timer_subticks);
irq_ack(0);
switch_task(1);
asm volatile (
".global _ret_from_preempt_source\n"
"_ret_from_preempt_source:"
);
return 1;
}