rulimine/common/sys/cpu.h

352 lines
7.6 KiB
C

#ifndef __SYS__CPU_H__
#define __SYS__CPU_H__
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#if defined(__x86_64__) || defined(__i386__)
inline bool cpuid(uint32_t leaf, uint32_t subleaf,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) {
uint32_t cpuid_max;
asm volatile ("cpuid"
: "=a" (cpuid_max)
: "a" (leaf & 0x80000000)
: "ebx", "ecx", "edx");
if (leaf > cpuid_max)
return false;
asm volatile ("cpuid"
: "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx)
: "a" (leaf), "c" (subleaf));
return true;
}
inline void outb(uint16_t port, uint8_t value) {
asm volatile ("outb %%al, %1" : : "a" (value), "Nd" (port) : "memory");
}
inline void outw(uint16_t port, uint16_t value) {
asm volatile ("outw %%ax, %1" : : "a" (value), "Nd" (port) : "memory");
}
inline void outd(uint16_t port, uint32_t value) {
asm volatile ("outl %%eax, %1" : : "a" (value), "Nd" (port) : "memory");
}
inline uint8_t inb(uint16_t port) {
uint8_t value;
asm volatile ("inb %1, %%al" : "=a" (value) : "Nd" (port) : "memory");
return value;
}
inline uint16_t inw(uint16_t port) {
uint16_t value;
asm volatile ("inw %1, %%ax" : "=a" (value) : "Nd" (port) : "memory");
return value;
}
inline uint32_t ind(uint16_t port) {
uint32_t value;
asm volatile ("inl %1, %%eax" : "=a" (value) : "Nd" (port) : "memory");
return value;
}
inline void mmoutb(uintptr_t addr, uint8_t value) {
asm volatile (
"movb %1, (%0)"
:
: "r" (addr), "ir" (value)
: "memory"
);
}
inline void mmoutw(uintptr_t addr, uint16_t value) {
asm volatile (
"movw %1, (%0)"
:
: "r" (addr), "ir" (value)
: "memory"
);
}
inline void mmoutd(uintptr_t addr, uint32_t value) {
asm volatile (
"movl %1, (%0)"
:
: "r" (addr), "ir" (value)
: "memory"
);
}
#if defined (__x86_64__)
inline void mmoutq(uintptr_t addr, uint64_t value) {
asm volatile (
"movq %1, (%0)"
:
: "r" (addr), "r" (value)
: "memory"
);
}
#endif
inline uint8_t mminb(uintptr_t addr) {
uint8_t ret;
asm volatile (
"movb (%1), %0"
: "=r" (ret)
: "r" (addr)
: "memory"
);
return ret;
}
inline uint16_t mminw(uintptr_t addr) {
uint16_t ret;
asm volatile (
"movw (%1), %0"
: "=r" (ret)
: "r" (addr)
: "memory"
);
return ret;
}
inline uint32_t mmind(uintptr_t addr) {
uint32_t ret;
asm volatile (
"movl (%1), %0"
: "=r" (ret)
: "r" (addr)
: "memory"
);
return ret;
}
#if defined (__x86_64__)
inline uint64_t mminq(uintptr_t addr) {
uint64_t ret;
asm volatile (
"movq (%1), %0"
: "=r" (ret)
: "r" (addr)
: "memory"
);
return ret;
}
#endif
inline uint64_t rdmsr(uint32_t msr) {
uint32_t edx, eax;
asm volatile ("rdmsr"
: "=a" (eax), "=d" (edx)
: "c" (msr)
: "memory");
return ((uint64_t)edx << 32) | eax;
}
inline void wrmsr(uint32_t msr, uint64_t value) {
uint32_t edx = value >> 32;
uint32_t eax = (uint32_t)value;
asm volatile ("wrmsr"
:
: "a" (eax), "d" (edx), "c" (msr)
: "memory");
}
inline uint64_t rdtsc(void) {
uint32_t edx, eax;
asm volatile ("rdtsc" : "=a" (eax), "=d" (edx));
return ((uint64_t)edx << 32) | eax;
}
inline void delay(uint64_t cycles) {
uint64_t next_stop = rdtsc() + cycles;
while (rdtsc() < next_stop);
}
#define rdrand(type) ({ \
type rdrand__ret; \
asm volatile ( \
"1: " \
"rdrand %0;" \
"jnc 1b;" \
: "=r" (rdrand__ret) \
); \
rdrand__ret; \
})
#define rdseed(type) ({ \
type rdseed__ret; \
asm volatile ( \
"1: " \
"rdseed %0;" \
"jnc 1b;" \
: "=r" (rdseed__ret) \
); \
rdseed__ret; \
})
#define write_cr(reg, val) do { \
asm volatile ("mov %0, %%cr" reg :: "r" (val) : "memory"); \
} while (0)
#define read_cr(reg) ({ \
size_t read_cr__cr; \
asm volatile ("mov %%cr" reg ", %0" : "=r" (read_cr__cr) :: "memory"); \
read_cr__cr; \
})
#define locked_read(var) ({ \
typeof(*var) locked_read__ret = 0; \
asm volatile ( \
"lock xadd %0, %1" \
: "+r" (locked_read__ret) \
: "m" (*(var)) \
: "memory" \
); \
locked_read__ret; \
})
#define locked_write(var, val) do { \
__auto_type locked_write__ret = val; \
asm volatile ( \
"lock xchg %0, %1" \
: "+r" ((locked_write__ret)) \
: "m" (*(var)) \
: "memory" \
); \
} while (0)
#elif defined (__aarch64__)
inline uint64_t rdtsc(void) {
uint64_t v;
asm volatile ("mrs %0, cntpct_el0" : "=r" (v));
return v;
}
#define locked_read(var) ({ \
typeof(*var) locked_read__ret = 0; \
asm volatile ( \
"ldar %0, %1" \
: "=r" (locked_read__ret) \
: "m" (*(var)) \
: "memory" \
); \
locked_read__ret; \
})
inline size_t icache_line_size(void) {
uint64_t ctr;
asm volatile ("mrs %0, ctr_el0" : "=r"(ctr));
return (ctr & 0b1111) << 4;
}
inline size_t dcache_line_size(void) {
uint64_t ctr;
asm volatile ("mrs %0, ctr_el0" : "=r"(ctr));
return ((ctr >> 16) & 0b1111) << 4;
}
// Clean D-Cache to Point of Coherency
inline void clean_dcache_poc(uintptr_t start, uintptr_t end) {
size_t dsz = dcache_line_size();
uintptr_t addr = start & ~(dsz - 1);
while (addr < end) {
asm volatile ("dc cvac, %0" :: "r"(addr) : "memory");
addr += dsz;
}
asm volatile ("dsb sy\n\tisb");
}
// Invalidate I-Cache to Point of Unification
inline void inval_icache_pou(uintptr_t start, uintptr_t end) {
size_t isz = icache_line_size();
uintptr_t addr = start & ~(isz - 1);
while (addr < end) {
asm volatile ("ic ivau, %0" :: "r"(addr) : "memory");
addr += isz;
}
asm volatile ("dsb sy\n\tisb");
}
inline int current_el(void) {
uint64_t v;
asm volatile ("mrs %0, currentel" : "=r"(v));
v = (v >> 2) & 0b11;
return v;
}
#elif defined (__riscv64)
inline uint64_t rdtsc(void) {
uint64_t v;
asm ("rdtime %0" : "=r"(v));
return v;
}
#define csr_read(csr) ({\
size_t v;\
asm volatile ("csrr %0, " csr : "=r"(v));\
v;\
})
#define csr_write(csr, v) ({\
size_t old;\
asm volatile ("csrrw %0, " csr ", %1" : "=r"(old) : "r"(v));\
old;\
})
#define make_satp(mode, ppn) (((size_t)(mode) << 60) | ((size_t)(ppn) >> 12))
#define locked_read(var) ({ \
typeof(*var) locked_read__ret; \
asm volatile ( \
"ld %0, (%1); fence r, rw" \
: "=r"(locked_read__ret) \
: "r"(var) \
: "memory" \
); \
locked_read__ret; \
})
extern size_t bsp_hartid;
struct riscv_hart {
struct riscv_hart *next;
const char *isa_string;
size_t hartid;
uint32_t acpi_uid;
uint8_t mmu_type;
uint8_t flags;
};
#define RISCV_HART_COPROC ((uint8_t)1 << 0) // is a coprocessor
#define RISCV_HART_HAS_MMU ((uint8_t)1 << 1) // `mmu_type` field is valid
extern struct riscv_hart *hart_list;
bool riscv_check_isa_extension_for(size_t hartid, const char *ext, size_t *maj, size_t *min);
static inline bool riscv_check_isa_extension(const char *ext, size_t *maj, size_t *min) {
return riscv_check_isa_extension_for(bsp_hartid, ext, maj, min);
}
void init_riscv(void);
#else
#error Unknown architecture
#endif
#endif