rulimine/limine-deploy.c
2022-12-14 00:09:55 +00:00

966 lines
31 KiB
C

#undef IS_WINDOWS
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
#define IS_WINDOWS 1
#endif
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h>
#include <inttypes.h>
#include <limits.h>
#include "limine-hdd.h"
static bool quiet = false;
static int set_pos(FILE *stream, uint64_t pos) {
if (sizeof(long) >= 8) {
return fseek(stream, (long)pos, SEEK_SET);
}
long jump_size = (LONG_MAX / 2) + 1;
long last_jump = pos % jump_size;
uint64_t jumps = pos / jump_size;
rewind(stream);
for (uint64_t i = 0; i < jumps; i++) {
if (fseek(stream, jump_size, SEEK_CUR) != 0) {
return -1;
}
}
if (fseek(stream, last_jump, SEEK_CUR) != 0) {
return -1;
}
return 0;
}
#define DIV_ROUNDUP(a, b) (((a) + ((b) - 1)) / (b))
struct gpt_table_header {
// the head
char signature[8];
uint32_t revision;
uint32_t header_size;
uint32_t crc32;
uint32_t _reserved0;
// the partitioning info
uint64_t my_lba;
uint64_t alternate_lba;
uint64_t first_usable_lba;
uint64_t last_usable_lba;
// the guid
uint64_t disk_guid[2];
// entries related
uint64_t partition_entry_lba;
uint32_t number_of_partition_entries;
uint32_t size_of_partition_entry;
uint32_t partition_entry_array_crc32;
};
struct gpt_entry {
uint64_t partition_type_guid[2];
uint64_t unique_partition_guid[2];
uint64_t starting_lba;
uint64_t ending_lba;
uint64_t attributes;
uint16_t partition_name[36];
};
// This table from https://web.mit.edu/freebsd/head/sys/libkern/crc32.c
static const uint32_t crc32_table[] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
static uint32_t crc32(void *_stream, size_t len) {
uint8_t *stream = _stream;
uint32_t ret = 0xffffffff;
for (size_t i = 0; i < len; i++) {
ret = (ret >> 8) ^ crc32_table[(ret ^ stream[i]) & 0xff];
}
ret ^= 0xffffffff;
return ret;
}
static bool bigendian = false;
static uint16_t endswap16(uint16_t value) {
uint16_t ret = 0;
ret |= (value >> 8) & 0x00ff;
ret |= (value << 8) & 0xff00;
return ret;
}
static uint32_t endswap32(uint32_t value) {
uint32_t ret = 0;
ret |= (value >> 24) & 0x000000ff;
ret |= (value >> 8) & 0x0000ff00;
ret |= (value << 8) & 0x00ff0000;
ret |= (value << 24) & 0xff000000;
return ret;
}
static uint64_t endswap64(uint64_t value) {
uint64_t ret = 0;
ret |= (value >> 56) & 0x00000000000000ff;
ret |= (value >> 40) & 0x000000000000ff00;
ret |= (value >> 24) & 0x0000000000ff0000;
ret |= (value >> 8) & 0x00000000ff000000;
ret |= (value << 8) & 0x000000ff00000000;
ret |= (value << 24) & 0x0000ff0000000000;
ret |= (value << 40) & 0x00ff000000000000;
ret |= (value << 56) & 0xff00000000000000;
return ret;
}
#define ENDSWAP(VALUE) (bigendian ? ( \
sizeof(VALUE) == 1 ? (VALUE) : \
sizeof(VALUE) == 2 ? endswap16(VALUE) : \
sizeof(VALUE) == 4 ? endswap32(VALUE) : \
sizeof(VALUE) == 8 ? endswap64(VALUE) : (abort(), 1) \
) : (VALUE))
static enum {
CACHE_CLEAN,
CACHE_DIRTY
} cache_state;
static uint64_t cached_block;
static uint8_t *cache = NULL;
static FILE *device = NULL;
static size_t block_size;
static bool device_init(void) {
size_t guesses[] = { 512, 2048, 4096 };
for (size_t i = 0; i < sizeof(guesses) / sizeof(size_t); i++) {
void *tmp = realloc(cache, guesses[i]);
if (tmp == NULL) {
perror("ERROR");
return false;
}
cache = tmp;
rewind(device);
size_t ret = fread(cache, guesses[i], 1, device);
if (ret != 1) {
continue;
}
block_size = guesses[i];
if (!quiet) {
fprintf(stderr, "Physical block size of %zu bytes.\n", block_size);
}
cache_state = CACHE_CLEAN;
cached_block = 0;
return true;
}
fprintf(stderr, "ERROR: Couldn't determine block size of device.\n");
return false;
}
static bool device_flush_cache(void) {
if (cache_state == CACHE_CLEAN)
return true;
if (set_pos(device, cached_block * block_size) != 0) {
perror("ERROR");
return false;
}
size_t ret = fwrite(cache, block_size, 1, device);
if (ret != 1) {
perror("ERROR");
return false;
}
cache_state = CACHE_CLEAN;
return true;
}
static bool device_cache_block(uint64_t block) {
if (cached_block == block)
return true;
if (cache_state == CACHE_DIRTY) {
if (!device_flush_cache())
return false;
}
if (set_pos(device, block * block_size) != 0) {
perror("ERROR");
return false;
}
size_t ret = fread(cache, block_size, 1, device);
if (ret != 1) {
perror("ERROR");
return false;
}
cached_block = block;
return true;
}
struct undeploy_data {
void *data;
uint64_t loc;
uint64_t count;
};
#define UNDEPLOY_DATA_MAX 256
static bool undeploying = false;
static struct undeploy_data undeploy_data[UNDEPLOY_DATA_MAX];
static struct undeploy_data undeploy_data_rev[UNDEPLOY_DATA_MAX];
static uint64_t undeploy_data_i = 0;
static const char *undeploy_file = NULL;
static void reverse_undeploy_data(void) {
for (size_t i = 0, j = undeploy_data_i - 1; i < undeploy_data_i; i++, j--) {
undeploy_data_rev[j] = undeploy_data[i];
}
memcpy(undeploy_data, undeploy_data_rev, undeploy_data_i * sizeof(struct undeploy_data));
}
static void free_undeploy_data(void) {
for (size_t i = 0; i < undeploy_data_i; i++) {
free(undeploy_data[i].data);
}
}
static bool store_undeploy_data(const char *filename) {
if (!quiet) {
fprintf(stderr, "Storing undeploy data to file: `%s`...\n", filename);
}
FILE *udfile = fopen(filename, "wb");
if (udfile == NULL) {
goto error;
}
if (fwrite(&undeploy_data_i, sizeof(uint64_t), 1, udfile) != 1) {
goto error;
}
for (size_t i = 0; i < undeploy_data_i; i++) {
if (fwrite(&undeploy_data[i].loc, sizeof(uint64_t), 1, udfile) != 1) {
goto error;
}
if (fwrite(&undeploy_data[i].count, sizeof(uint64_t), 1, udfile) != 1) {
goto error;
}
if (fwrite(undeploy_data[i].data, undeploy_data[i].count, 1, udfile) != 1) {
goto error;
}
}
fclose(udfile);
return true;
error:
perror("ERROR");
if (udfile != NULL) {
fclose(udfile);
}
return false;
}
static bool load_undeploy_data(const char *filename) {
if (!quiet) {
fprintf(stderr, "Loading undeploy data from file: `%s`...\n", filename);
}
FILE *udfile = fopen(filename, "rb");
if (udfile == NULL) {
goto error;
}
if (fread(&undeploy_data_i, sizeof(uint64_t), 1, udfile) != 1) {
goto error;
}
for (size_t i = 0; i < undeploy_data_i; i++) {
if (fread(&undeploy_data[i].loc, sizeof(uint64_t), 1, udfile) != 1) {
goto error;
}
if (fread(&undeploy_data[i].count, sizeof(uint64_t), 1, udfile) != 1) {
goto error;
}
undeploy_data[i].data = malloc(undeploy_data[i].count);
if (undeploy_data[i].data == NULL) {
goto error;
}
if (fread(undeploy_data[i].data, undeploy_data[i].count, 1, udfile) != 1) {
goto error;
}
}
fclose(udfile);
return true;
error:
perror("ERROR");
if (udfile != NULL) {
fclose(udfile);
}
return false;
}
static bool _device_read(void *_buffer, uint64_t loc, size_t count) {
uint8_t *buffer = _buffer;
uint64_t progress = 0;
while (progress < count) {
uint64_t block = (loc + progress) / block_size;
if (!device_cache_block(block)) {
fprintf(stderr, "ERROR: Read error.\n");
return false;
}
uint64_t chunk = count - progress;
uint64_t offset = (loc + progress) % block_size;
if (chunk > block_size - offset)
chunk = block_size - offset;
memcpy(buffer + progress, &cache[offset], chunk);
progress += chunk;
}
return true;
}
static bool _device_write(const void *_buffer, uint64_t loc, size_t count) {
if (undeploying) {
goto skip_save;
}
if (undeploy_data_i >= UNDEPLOY_DATA_MAX) {
fprintf(stderr, "Internal error: Too many undeploy data entries!\n");
return false;
}
struct undeploy_data *ud = &undeploy_data[undeploy_data_i];
ud->data = malloc(count);
if (ud->data == NULL) {
fprintf(stderr, "ERROR: Memory allocation failure.\n");
return false;
}
if (!_device_read(ud->data, loc, count)) {
fprintf(stderr, "ERROR: Device read failure.\n");
return false;
}
ud->loc = loc;
ud->count = count;
skip_save:;
const uint8_t *buffer = _buffer;
uint64_t progress = 0;
while (progress < count) {
uint64_t block = (loc + progress) / block_size;
if (!device_cache_block(block)) {
fprintf(stderr, "ERROR: Write error.\n");
return false;
}
uint64_t chunk = count - progress;
uint64_t offset = (loc + progress) % block_size;
if (chunk > block_size - offset)
chunk = block_size - offset;
memcpy(&cache[offset], buffer + progress, chunk);
cache_state = CACHE_DIRTY;
progress += chunk;
}
if (!undeploying) {
undeploy_data_i++;
}
return true;
}
static void undeploy(void) {
undeploying = true;
cache_state = CACHE_CLEAN;
cached_block = (uint64_t)-1;
for (size_t i = 0; i < undeploy_data_i; i++) {
struct undeploy_data *ud = &undeploy_data[i];
bool retry = false;
while (!_device_write(ud->data, ud->loc, ud->count)) {
if (retry) {
fprintf(stderr, "ERROR: Undeploy data index %zu failed to write. Undeploy may be incomplete!\n", i);
break;
}
if (!quiet) {
fprintf(stderr, "Warning: Undeploy data index %zu failed to write, retrying...\n", i);
}
if (!device_flush_cache()) {
fprintf(stderr, "ERROR: Device cache flush failure. Undeploy may be incomplete!\n");
}
cache_state = CACHE_CLEAN;
cached_block = (uint64_t)-1;
retry = true;
}
}
if (!device_flush_cache()) {
fprintf(stderr, "ERROR: Device cache flush failure. Undeploy may be incomplete!\n");
}
if (!quiet) {
fprintf(stderr, "Undeploy data restored successfully. Limine undeployed!\n");
}
}
#define device_read(BUFFER, LOC, COUNT) \
do { \
if (!_device_read(BUFFER, LOC, COUNT)) \
goto cleanup; \
} while (0)
#define device_write(BUFFER, LOC, COUNT) \
do { \
if (!_device_write(BUFFER, LOC, COUNT)) \
goto cleanup; \
} while (0)
static void usage(const char *name) {
printf("Usage: %s <device> [GPT partition index]\n", name);
printf("\n");
printf(" --force-mbr Force MBR detection to work even if the\n");
printf(" safety checks fail (DANGEROUS!)\n");
printf("\n");
printf(" --undeploy Reverse the entire deployment procedure\n");
printf("\n");
printf(" --undeploy-data-file=<filename>\n");
printf(" Set the input (for --undeploy) or output file\n");
printf(" name of the file which contains undeploy data\n");
printf("\n");
printf(" --quiet Do not print verbose diagnostic messages\n");
printf("\n");
printf(" --help | -h Display this help message\n");
printf("\n");
#ifdef IS_WINDOWS
system("pause");
#endif
}
int main(int argc, char *argv[]) {
int ok = EXIT_FAILURE;
int force_mbr = 0;
bool undeploy_mode = false;
const uint8_t *bootloader_img = binary_limine_hdd_bin_data;
size_t bootloader_file_size = sizeof(binary_limine_hdd_bin_data);
uint8_t orig_mbr[70], timestamp[6];
const char *part_ndx = NULL;
uint32_t endcheck = 0x12345678;
uint8_t endbyte = *((uint8_t *)&endcheck);
bigendian = endbyte == 0x12;
if (argc < 2) {
usage(argv[0]);
return EXIT_FAILURE;
}
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) {
usage(argv[0]);
return EXIT_SUCCESS;
} else if (strcmp(argv[i], "--quiet") == 0) {
quiet = true;
} else if (strcmp(argv[i], "--force-mbr") == 0) {
if (force_mbr && !quiet) {
fprintf(stderr, "Warning: --force-mbr already set.\n");
}
force_mbr = 1;
} else if (strcmp(argv[i], "--undeploy") == 0) {
if (undeploy_mode && !quiet) {
fprintf(stderr, "Warning: --undeploy already set.\n");
}
undeploy_mode = true;
} else if (memcmp(argv[i], "--undeploy-data-file=", 21) == 0) {
if (undeploy_file != NULL && !quiet) {
fprintf(stderr, "Warning: --undeploy-data-file already set. Overriding...\n");
}
undeploy_file = argv[i] + 21;
if (strlen(undeploy_file) == 0) {
fprintf(stderr, "ERROR: Undeploy data file has a zero-length name!\n");
return EXIT_FAILURE;
}
} else {
if (device != NULL) { // [GPT partition index]
part_ndx = argv[i]; // TODO: Make this non-positional?
} else if ((device = fopen(argv[i], "r+b")) == NULL) { // <device>
perror("ERROR");
return EXIT_FAILURE;
}
}
}
if (device == NULL) {
fprintf(stderr, "ERROR: No device specified\n");
usage(argv[0]);
return EXIT_FAILURE;
}
if (!device_init()) {
goto undeploy_mode_cleanup;
}
if (undeploy_mode) {
if (undeploy_file == NULL) {
fprintf(stderr, "ERROR: Undeploy mode set but no --undeploy-data-file=... passed.\n");
goto undeploy_mode_cleanup;
}
if (!load_undeploy_data(undeploy_file)) {
goto undeploy_mode_cleanup;
}
undeploy();
ok = EXIT_SUCCESS;
goto undeploy_mode_cleanup;
}
// Probe for GPT and logical block size
int gpt = 0;
struct gpt_table_header gpt_header;
uint64_t lb_guesses[] = { 512, 4096 };
uint64_t lb_size = 0;
for (size_t i = 0; i < sizeof(lb_guesses) / sizeof(uint64_t); i++) {
device_read(&gpt_header, lb_guesses[i], sizeof(struct gpt_table_header));
if (!strncmp(gpt_header.signature, "EFI PART", 8)) {
lb_size = lb_guesses[i];
if (!force_mbr) {
gpt = 1;
if (!quiet) {
fprintf(stderr, "Deploying to GPT. Logical block size of %" PRIu64 " bytes.\n",
lb_guesses[i]);
}
} else {
fprintf(stderr, "ERROR: Device has a valid GPT, refusing to force MBR.\n");
goto cleanup;
}
break;
}
}
struct gpt_table_header secondary_gpt_header;
if (gpt) {
if (!quiet) {
fprintf(stderr, "Secondary header at LBA 0x%" PRIx64 ".\n",
ENDSWAP(gpt_header.alternate_lba));
}
device_read(&secondary_gpt_header, lb_size * ENDSWAP(gpt_header.alternate_lba),
sizeof(struct gpt_table_header));
if (!strncmp(secondary_gpt_header.signature, "EFI PART", 8)) {
if (!quiet) {
fprintf(stderr, "Secondary header valid.\n");
}
} else {
fprintf(stderr, "ERROR: Secondary header not valid, aborting.\n");
goto cleanup;
}
}
int mbr = 0;
if (gpt == 0) {
// Do all sanity checks on MBR
mbr = 1;
uint8_t hint8 = 0;
uint16_t hint16 = 0;
bool any_active = false;
device_read(&hint8, 446, sizeof(uint8_t));
if (hint8 != 0x00 && hint8 != 0x80) {
if (!force_mbr) {
mbr = 0;
} else {
hint8 = hint8 & 0x80 ? 0x80 : 0x00;
device_write(&hint8, 446, sizeof(uint8_t));
}
}
any_active = any_active ? any_active : (hint8 & 0x80) != 0;
device_read(&hint8, 462, sizeof(uint8_t));
if (hint8 != 0x00 && hint8 != 0x80) {
if (!force_mbr) {
mbr = 0;
} else {
hint8 = hint8 & 0x80 ? 0x80 : 0x00;
device_write(&hint8, 462, sizeof(uint8_t));
}
}
any_active = any_active ? any_active : (hint8 & 0x80) != 0;
device_read(&hint8, 478, sizeof(uint8_t));
if (hint8 != 0x00 && hint8 != 0x80) {
if (!force_mbr) {
mbr = 0;
} else {
hint8 = hint8 & 0x80 ? 0x80 : 0x00;
device_write(&hint8, 478, sizeof(uint8_t));
}
}
any_active = any_active ? any_active : (hint8 & 0x80) != 0;
device_read(&hint8, 494, sizeof(uint8_t));
if (hint8 != 0x00 && hint8 != 0x80) {
if (!force_mbr) {
mbr = 0;
} else {
hint8 = hint8 & 0x80 ? 0x80 : 0x00;
device_write(&hint8, 494, sizeof(uint8_t));
}
}
any_active = any_active ? any_active : (hint8 & 0x80) != 0;
char hintc[64];
device_read(hintc, 4, 8);
if (memcmp(hintc, "_ECH_FS_", 8) == 0) {
if (!force_mbr) {
mbr = 0;
} else {
memset(hintc, 0, 8);
device_write(hintc, 4, 8);
}
}
device_read(hintc, 3, 4);
if (memcmp(hintc, "NTFS", 4) == 0) {
if (!force_mbr) {
mbr = 0;
} else {
memset(hintc, 0, 4);
device_write(hintc, 3, 4);
}
}
device_read(hintc, 54, 3);
if (memcmp(hintc, "FAT", 3) == 0) {
if (!force_mbr) {
mbr = 0;
} else {
memset(hintc, 0, 5);
device_write(hintc, 54, 5);
}
}
device_read(hintc, 82, 3);
if (memcmp(hintc, "FAT", 3) == 0) {
if (!force_mbr) {
mbr = 0;
} else {
memset(hintc, 0, 5);
device_write(hintc, 82, 5);
}
}
device_read(hintc, 3, 5);
if (memcmp(hintc, "FAT32", 5) == 0) {
if (!force_mbr) {
mbr = 0;
} else {
memset(hintc, 0, 5);
device_write(hintc, 3, 5);
}
}
device_read(&hint16, 1080, sizeof(uint16_t));
hint16 = ENDSWAP(hint16);
if (hint16 == 0xef53) {
if (!force_mbr) {
mbr = 0;
} else {
hint16 = 0;
hint16 = ENDSWAP(hint16);
device_write(&hint16, 1080, sizeof(uint16_t));
}
}
if (mbr && !any_active) {
if (!quiet) {
fprintf(stderr, "No active partition found, some systems may not boot.\n");
fprintf(stderr, "Setting partition 1 as active to work around the issue...\n");
}
hint8 = 0x80;
device_write(&hint8, 446, sizeof(uint8_t));
}
}
if (gpt == 0 && mbr == 0) {
fprintf(stderr, "ERROR: Could not determine if the device has a valid partition table.\n");
fprintf(stderr, " Please ensure the device has a valid MBR or GPT.\n");
fprintf(stderr, " Alternatively, pass `--force-mbr` to override these checks.\n");
fprintf(stderr, " **ONLY DO THIS AT YOUR OWN RISK, DATA LOSS MAY OCCUR!**\n");
goto cleanup;
}
size_t stage2_size = bootloader_file_size - 512;
size_t stage2_sects = DIV_ROUNDUP(stage2_size, 512);
uint16_t stage2_size_a = (stage2_sects / 2) * 512 + (stage2_sects % 2 ? 512 : 0);
uint16_t stage2_size_b = (stage2_sects / 2) * 512;
// Default split of stage2 for MBR (consecutive in post MBR gap)
uint64_t stage2_loc_a = 512;
uint64_t stage2_loc_b = stage2_loc_a + stage2_size_a;
if (gpt) {
if (part_ndx != NULL) {
uint32_t partition_num;
sscanf(part_ndx, "%" SCNu32, &partition_num);
partition_num--;
if (partition_num > ENDSWAP(gpt_header.number_of_partition_entries)) {
fprintf(stderr, "ERROR: Partition number is too large.\n");
goto cleanup;
}
struct gpt_entry gpt_entry;
device_read(&gpt_entry,
(ENDSWAP(gpt_header.partition_entry_lba) * lb_size)
+ (partition_num * ENDSWAP(gpt_header.size_of_partition_entry)),
sizeof(struct gpt_entry));
if (gpt_entry.unique_partition_guid[0] == 0 &&
gpt_entry.unique_partition_guid[1] == 0) {
fprintf(stderr, "ERROR: No such partition.\n");
goto cleanup;
}
if (!quiet) {
fprintf(stderr, "GPT partition specified. Deploying there instead of embedding.\n");
}
stage2_loc_a = ENDSWAP(gpt_entry.starting_lba) * lb_size;
stage2_loc_b = stage2_loc_a + stage2_size_a;
if (stage2_loc_b & (lb_size - 1))
stage2_loc_b = (stage2_loc_b + lb_size) & ~(lb_size - 1);
} else {
if (!quiet) {
fprintf(stderr, "GPT partition NOT specified. Attempting GPT embedding.\n");
}
int64_t max_partition_entry_used = -1;
for (int64_t i = 0; i < (int64_t)ENDSWAP(gpt_header.number_of_partition_entries); i++) {
struct gpt_entry gpt_entry;
device_read(&gpt_entry,
(ENDSWAP(gpt_header.partition_entry_lba) * lb_size)
+ (i * ENDSWAP(gpt_header.size_of_partition_entry)),
sizeof(struct gpt_entry));
if (gpt_entry.unique_partition_guid[0] != 0 ||
gpt_entry.unique_partition_guid[1] != 0) {
if (i > max_partition_entry_used)
max_partition_entry_used = i;
}
}
stage2_loc_a = (ENDSWAP(gpt_header.partition_entry_lba) + 32) * lb_size;
stage2_loc_a -= stage2_size_a;
stage2_loc_a &= ~(lb_size - 1);
stage2_loc_b = (ENDSWAP(secondary_gpt_header.partition_entry_lba) + 32) * lb_size;
stage2_loc_b -= stage2_size_b;
stage2_loc_b &= ~(lb_size - 1);
size_t partition_entries_per_lb =
lb_size / ENDSWAP(gpt_header.size_of_partition_entry);
size_t new_partition_array_lba_size =
stage2_loc_a / lb_size - ENDSWAP(gpt_header.partition_entry_lba);
size_t new_partition_entry_count =
new_partition_array_lba_size * partition_entries_per_lb;
if ((int64_t)new_partition_entry_count <= max_partition_entry_used) {
fprintf(stderr, "ERROR: Cannot embed because there are too many used partition entries.\n");
goto cleanup;
}
if (!quiet) {
fprintf(stderr, "New maximum count of partition entries: %zu.\n", new_partition_entry_count);
}
// Zero out unused partitions
void *empty = calloc(1, ENDSWAP(gpt_header.size_of_partition_entry));
for (size_t i = max_partition_entry_used + 1; i < new_partition_entry_count; i++) {
device_write(empty,
ENDSWAP(gpt_header.partition_entry_lba) * lb_size + i * ENDSWAP(gpt_header.size_of_partition_entry),
ENDSWAP(gpt_header.size_of_partition_entry));
}
for (size_t i = max_partition_entry_used + 1; i < new_partition_entry_count; i++) {
device_write(empty,
ENDSWAP(secondary_gpt_header.partition_entry_lba) * lb_size + i * ENDSWAP(secondary_gpt_header.size_of_partition_entry),
ENDSWAP(secondary_gpt_header.size_of_partition_entry));
}
free(empty);
uint8_t *partition_array =
malloc(new_partition_entry_count * ENDSWAP(gpt_header.size_of_partition_entry));
if (partition_array == NULL) {
perror("ERROR");
goto cleanup;
}
device_read(partition_array,
ENDSWAP(gpt_header.partition_entry_lba) * lb_size,
new_partition_entry_count * ENDSWAP(gpt_header.size_of_partition_entry));
uint32_t crc32_partition_array =
crc32(partition_array,
new_partition_entry_count * ENDSWAP(gpt_header.size_of_partition_entry));
free(partition_array);
gpt_header.partition_entry_array_crc32 = ENDSWAP(crc32_partition_array);
gpt_header.number_of_partition_entries = ENDSWAP(new_partition_entry_count);
gpt_header.crc32 = 0;
gpt_header.crc32 = crc32(&gpt_header, 92);
gpt_header.crc32 = ENDSWAP(gpt_header.crc32);
device_write(&gpt_header,
lb_size,
sizeof(struct gpt_table_header));
secondary_gpt_header.partition_entry_array_crc32 = ENDSWAP(crc32_partition_array);
secondary_gpt_header.number_of_partition_entries =
ENDSWAP(new_partition_entry_count);
secondary_gpt_header.crc32 = 0;
secondary_gpt_header.crc32 = crc32(&secondary_gpt_header, 92);
secondary_gpt_header.crc32 = ENDSWAP(secondary_gpt_header.crc32);
device_write(&secondary_gpt_header,
lb_size * ENDSWAP(gpt_header.alternate_lba),
sizeof(struct gpt_table_header));
}
} else {
if (!quiet) {
fprintf(stderr, "Deploying to MBR.\n");
}
}
if (!quiet) {
fprintf(stderr, "Stage 2 to be located at 0x%" PRIx64 " and 0x%" PRIx64 ".\n",
stage2_loc_a, stage2_loc_b);
}
// Save original timestamp
device_read(timestamp, 218, 6);
// Save the original partition table of the device
device_read(orig_mbr, 440, 70);
// Write the bootsector from the bootloader to the device
device_write(&bootloader_img[0], 0, 512);
// Write the rest of stage 2 to the device
device_write(&bootloader_img[512], stage2_loc_a, stage2_size_a);
device_write(&bootloader_img[512 + stage2_size_a],
stage2_loc_b, stage2_size - stage2_size_a);
// Hardcode in the bootsector the location of stage 2 halves
stage2_size_a = ENDSWAP(stage2_size_a);
device_write(&stage2_size_a, 0x1a4 + 0, sizeof(uint16_t));
stage2_size_b = ENDSWAP(stage2_size_b);
device_write(&stage2_size_b, 0x1a4 + 2, sizeof(uint16_t));
stage2_loc_a = ENDSWAP(stage2_loc_a);
device_write(&stage2_loc_a, 0x1a4 + 4, sizeof(uint64_t));
stage2_loc_b = ENDSWAP(stage2_loc_b);
device_write(&stage2_loc_b, 0x1a4 + 12, sizeof(uint64_t));
// Write back timestamp
device_write(timestamp, 218, 6);
// Write back the saved partition table to the device
device_write(orig_mbr, 440, 70);
if (!device_flush_cache())
goto cleanup;
if (!quiet) {
fprintf(stderr, "Reminder: Remember to copy the limine.sys file in either\n"
" the root, /boot, /limine, or /boot/limine directories of\n"
" one of the partitions on the device, or boot will fail!\n");
fprintf(stderr, "Limine deployed successfully!\n");
}
ok = EXIT_SUCCESS;
cleanup:
reverse_undeploy_data();
if (ok != EXIT_SUCCESS) {
// If we failed, attempt to reverse deploy process
undeploy();
} else if (undeploy_file != NULL) {
store_undeploy_data(undeploy_file);
}
undeploy_mode_cleanup:
free_undeploy_data();
if (cache)
free(cache);
if (device != NULL)
fclose(device);
return ok;
}