rulimine/common/mm/vmm.c

424 lines
14 KiB
C

#include <stdint.h>
#include <stddef.h>
#include <mm/vmm.h>
#include <mm/pmm.h>
#include <lib/misc.h>
#include <lib/print.h>
#include <sys/cpu.h>
#define PT_SIZE ((uint64_t)0x1000)
typedef uint64_t pt_entry_t;
// Maps level indexes to the page size for that level.
_Static_assert(VMM_MAX_LEVEL <= 5, "6-level paging not supported");
static uint64_t page_sizes[5] = {
0x1000,
0x200000,
0x40000000,
0x8000000000,
0x1000000000000,
};
static pt_entry_t *get_next_level(pagemap_t pagemap, pt_entry_t *current_level,
uint64_t virt, enum page_size desired_sz,
size_t level_idx, size_t entry);
#if defined (__x86_64__) || defined (__i386__)
#define PT_FLAG_VALID ((uint64_t)1 << 0)
#define PT_FLAG_WRITE ((uint64_t)1 << 1)
#define PT_FLAG_USER ((uint64_t)1 << 2)
#define PT_FLAG_LARGE ((uint64_t)1 << 7)
#define PT_FLAG_NX ((uint64_t)1 << 63)
#define PT_PADDR_MASK ((uint64_t)0x0000FFFFFFFFF000)
#define PT_TABLE_FLAGS (PT_FLAG_VALID | PT_FLAG_WRITE | PT_FLAG_USER)
#define PT_IS_TABLE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_LARGE)) == PT_FLAG_VALID)
#define PT_IS_LARGE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_LARGE)) == (PT_FLAG_VALID | PT_FLAG_LARGE))
#define PT_TO_VMM_FLAGS(x) ((x) & (PT_FLAG_WRITE | PT_FLAG_NX))
#define pte_new(addr, flags) ((pt_entry_t)(addr) | (flags))
#define pte_addr(pte) ((pte) & PT_PADDR_MASK)
pagemap_t new_pagemap(int paging_mode) {
pagemap_t pagemap;
pagemap.levels = paging_mode == PAGING_MODE_X86_64_5LVL ? 5 : 4;
pagemap.top_level = ext_mem_alloc(PT_SIZE);
return pagemap;
}
static bool is_1gib_page_supported(void) {
// Cache the cpuid result :^)
static bool CACHE_INIT = false;
static bool CACHE = false;
if (!CACHE_INIT) {
// Check if 1GiB pages are supported:
uint32_t eax, ebx, ecx, edx;
CACHE = cpuid(0x80000001, 0, &eax, &ebx, &ecx, &edx) && ((edx & 1 << 26) == 1 << 26);
CACHE_INIT = true;
printv("paging: 1GiB pages are %s!\n", CACHE ? "supported" : "not supported");
}
return CACHE;
}
void map_page(pagemap_t pagemap, uint64_t virt_addr, uint64_t phys_addr, uint64_t flags, enum page_size pg_size) {
// Calculate the indices in the various tables using the virtual address
size_t pml5_entry = (virt_addr & ((uint64_t)0x1ff << 48)) >> 48;
size_t pml4_entry = (virt_addr & ((uint64_t)0x1ff << 39)) >> 39;
size_t pml3_entry = (virt_addr & ((uint64_t)0x1ff << 30)) >> 30;
size_t pml2_entry = (virt_addr & ((uint64_t)0x1ff << 21)) >> 21;
size_t pml1_entry = (virt_addr & ((uint64_t)0x1ff << 12)) >> 12;
pt_entry_t *pml5, *pml4, *pml3, *pml2, *pml1;
flags |= PT_FLAG_VALID; // Always present
// Paging levels
switch (pagemap.levels) {
case 5:
pml5 = pagemap.top_level;
goto level5;
case 4:
pml4 = pagemap.top_level;
goto level4;
default:
__builtin_unreachable();
}
level5:
pml4 = get_next_level(pagemap, pml5, virt_addr, pg_size, 4, pml5_entry);
level4:
pml3 = get_next_level(pagemap, pml4, virt_addr, pg_size, 3, pml4_entry);
if (pg_size == Size1GiB) {
// Check if 1GiB pages are avaliable.
if (is_1gib_page_supported()) {
pml3[pml3_entry] = (pt_entry_t)(phys_addr | flags | PT_FLAG_LARGE);
} else {
// If 1GiB pages are not supported then emulate it by splitting them into
// 2MiB pages.
for (uint64_t i = 0; i < 0x40000000; i += 0x200000) {
map_page(pagemap, virt_addr + i, phys_addr + i, flags, Size2MiB);
}
}
return;
}
pml2 = get_next_level(pagemap, pml3, virt_addr, pg_size, 2, pml3_entry);
if (pg_size == Size2MiB) {
pml2[pml2_entry] = (pt_entry_t)(phys_addr | flags | PT_FLAG_LARGE);
return;
}
pml1 = get_next_level(pagemap, pml2, virt_addr, pg_size, 1, pml2_entry);
pml1[pml1_entry] = (pt_entry_t)(phys_addr | flags);
}
#elif defined (__aarch64__)
// Here we operate under the assumption that 4K pages are supported by the CPU.
// This appears to be guaranteed by UEFI, as section 2.3.6 "AArch64 Platforms"
// states that the primary processor core configuration includes 4K translation
// granules (TCR_EL1.TG0 = 0).
// Support for 4K pages also implies 2M, 1G and 512G blocks.
// Sanity check that 4K pages are supported.
void vmm_assert_4k_pages(void) {
uint64_t aa64mmfr0;
asm volatile ("mrs %0, id_aa64mmfr0_el1" : "=r"(aa64mmfr0));
if (((aa64mmfr0 >> 28) & 0b1111) == 0b1111) {
panic(false, "vmm: CPU does not support 4K pages, please make a bug report about this.");
}
}
#define PT_FLAG_VALID ((uint64_t)1 << 0)
#define PT_FLAG_TABLE ((uint64_t)1 << 1)
#define PT_FLAG_4K_PAGE ((uint64_t)1 << 1)
#define PT_FLAG_BLOCK ((uint64_t)0 << 1)
#define PT_FLAG_USER ((uint64_t)1 << 6)
#define PT_FLAG_READONLY ((uint64_t)1 << 7)
#define PT_FLAG_INNER_SH ((uint64_t)3 << 8)
#define PT_FLAG_ACCESS ((uint64_t)1 << 10)
#define PT_FLAG_XN ((uint64_t)1 << 54)
#define PT_FLAG_WB ((uint64_t)0 << 2)
#define PT_FLAG_FB ((uint64_t)1 << 2)
#define PT_PADDR_MASK ((uint64_t)0x0000FFFFFFFFF000)
#define PT_TABLE_FLAGS (PT_FLAG_VALID | PT_FLAG_TABLE)
#define PT_IS_TABLE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_TABLE)) == (PT_FLAG_VALID | PT_FLAG_TABLE))
#define PT_IS_LARGE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_TABLE)) == PT_FLAG_VALID)
#define PT_TO_VMM_FLAGS(x) (pt_to_vmm_flags_internal(x))
#define pte_new(addr, flags) ((pt_entry_t)(addr) | (flags))
#define pte_addr(pte) ((pte) & PT_PADDR_MASK)
static uint64_t pt_to_vmm_flags_internal(pt_entry_t entry) {
uint64_t flags = 0;
if (!(entry & PT_FLAG_READONLY))
flags |= VMM_FLAG_WRITE;
if (entry & PT_FLAG_XN)
flags |= VMM_FLAG_NOEXEC;
if (entry & PT_FLAG_FB)
flags |= VMM_FLAG_FB;
return flags;
}
pagemap_t new_pagemap(int paging_mode) {
pagemap_t pagemap;
pagemap.levels = paging_mode == PAGING_MODE_AARCH64_5LVL ? 5 : 4;
pagemap.top_level[0] = ext_mem_alloc(PT_SIZE);
pagemap.top_level[1] = ext_mem_alloc(PT_SIZE);
return pagemap;
}
void map_page(pagemap_t pagemap, uint64_t virt_addr, uint64_t phys_addr, uint64_t flags, enum page_size pg_size) {
// Calculate the indices in the various tables using the virtual address
size_t pml5_entry = (virt_addr & ((uint64_t)0xf << 48)) >> 48;
size_t pml4_entry = (virt_addr & ((uint64_t)0x1ff << 39)) >> 39;
size_t pml3_entry = (virt_addr & ((uint64_t)0x1ff << 30)) >> 30;
size_t pml2_entry = (virt_addr & ((uint64_t)0x1ff << 21)) >> 21;
size_t pml1_entry = (virt_addr & ((uint64_t)0x1ff << 12)) >> 12;
pt_entry_t *pml5, *pml4, *pml3, *pml2, *pml1;
bool is_higher_half = virt_addr & ((uint64_t)1 << 63);
uint64_t real_flags = PT_FLAG_VALID | PT_FLAG_INNER_SH | PT_FLAG_ACCESS | PT_FLAG_WB;
if (!(flags & VMM_FLAG_WRITE))
real_flags |= PT_FLAG_READONLY;
if (flags & VMM_FLAG_NOEXEC)
real_flags |= PT_FLAG_XN;
if (flags & VMM_FLAG_FB)
real_flags |= PT_FLAG_FB;
// Paging levels
switch (pagemap.levels) {
case 5:
pml5 = pagemap.top_level[is_higher_half];
goto level5;
case 4:
pml4 = pagemap.top_level[is_higher_half];
goto level4;
default:
__builtin_unreachable();
}
level5:
pml4 = get_next_level(pagemap, pml5, virt_addr, pg_size, 4, pml5_entry);
level4:
pml3 = get_next_level(pagemap, pml4, virt_addr, pg_size, 3, pml4_entry);
if (pg_size == Size1GiB) {
pml3[pml3_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_BLOCK);
return;
}
pml2 = get_next_level(pagemap, pml3, virt_addr, pg_size, 2, pml3_entry);
if (pg_size == Size2MiB) {
pml2[pml2_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_BLOCK);
return;
}
pml1 = get_next_level(pagemap, pml2, virt_addr, pg_size, 1, pml2_entry);
pml1[pml1_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_4K_PAGE);
}
#elif defined (__riscv64)
#define PT_FLAG_VALID ((uint64_t)1 << 0)
#define PT_FLAG_READ ((uint64_t)1 << 1)
#define PT_FLAG_WRITE ((uint64_t)1 << 2)
#define PT_FLAG_EXEC ((uint64_t)1 << 3)
#define PT_FLAG_USER ((uint64_t)1 << 4)
#define PT_FLAG_ACCESSED ((uint64_t)1 << 6)
#define PT_FLAG_DIRTY ((uint64_t)1 << 7)
#define PT_PADDR_MASK ((uint64_t)0x003ffffffffffc00)
#define PT_FLAG_RWX (PT_FLAG_READ | PT_FLAG_WRITE | PT_FLAG_EXEC)
#define PT_TABLE_FLAGS PT_FLAG_VALID
#define PT_IS_TABLE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_RWX)) == PT_FLAG_VALID)
#define PT_IS_LARGE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_RWX)) > PT_FLAG_VALID)
#define PT_TO_VMM_FLAGS(x) (pt_to_vmm_flags_internal(x))
#define pte_new(addr, flags) (((pt_entry_t)(addr) >> 2) | (flags))
#define pte_addr(pte) (((pte) & PT_PADDR_MASK) << 2)
static uint64_t pt_to_vmm_flags_internal(pt_entry_t entry) {
uint64_t flags = 0;
if (entry & PT_FLAG_WRITE)
flags |= VMM_FLAG_WRITE;
if (!(entry & PT_FLAG_EXEC))
flags |= VMM_FLAG_NOEXEC;
return flags;
}
uint64_t paging_mode_higher_half(int paging_mode) {
switch (paging_mode) {
case PAGING_MODE_RISCV_SV39:
return 0xffffffc000000000;
case PAGING_MODE_RISCV_SV48:
return 0xffff800000000000;
case PAGING_MODE_RISCV_SV57:
return 0xff00000000000000;
default:
panic(false, "paging_mode_higher_half: invalid mode");
}
}
int paging_mode_va_bits(int paging_mode) {
switch (paging_mode) {
case PAGING_MODE_RISCV_SV39:
return 39;
case PAGING_MODE_RISCV_SV48:
return 48;
case PAGING_MODE_RISCV_SV57:
return 57;
default:
panic(false, "paging_mode_va_bits: invalid mode");
}
}
int vmm_max_paging_mode(void)
{
static int max_level;
if (max_level > 0)
goto done;
pt_entry_t *table = ext_mem_alloc(PT_SIZE);
// Test each paging mode starting with Sv57.
// Since writes to `satp` with an invalid MODE have no effect, and pages can be mapped at
// any level, we can identity map the entire lower half (very likely guaranteeing everything
// this code needs will be mapped) and check if enabling the paging mode succeeds.
int lvl = 4;
for (; lvl >= 2; lvl--) {
pt_entry_t entry = PT_FLAG_ACCESSED | PT_FLAG_DIRTY | PT_FLAG_RWX | PT_FLAG_VALID;
for (int i = 0; i < 256; i++) {
table[i] = entry;
entry += page_sizes[lvl] >> 2;
}
uint64_t satp = ((uint64_t)(6 + lvl) << 60) | ((uint64_t)table >> 12);
csr_write("satp", satp);
if (csr_read("satp") == satp) {
max_level = lvl;
break;
}
}
csr_write("satp", 0);
pmm_free(table, PT_SIZE);
if (max_level == 0)
panic(false, "vmm: paging is not supported");
done:
return 6 + max_level;
}
pagemap_t new_pagemap(int paging_mode) {
pagemap_t pagemap;
pagemap.paging_mode = paging_mode;
pagemap.max_page_size = paging_mode - 6;
pagemap.top_level = ext_mem_alloc(PT_SIZE);
return pagemap;
}
void map_page(pagemap_t pagemap, uint64_t virt_addr, uint64_t phys_addr, uint64_t flags, enum page_size page_size) {
// Truncate the requested page size to the maximum supported.
if (page_size > pagemap.max_page_size)
page_size = pagemap.max_page_size;
// Convert VMM_FLAG_* into PT_FLAG_*.
// Set the ACCESSED and DIRTY flags to avoid faults.
pt_entry_t ptflags = PT_FLAG_VALID | PT_FLAG_READ | PT_FLAG_ACCESSED | PT_FLAG_DIRTY;
if (flags & VMM_FLAG_WRITE)
ptflags |= PT_FLAG_WRITE;
if (!(flags & VMM_FLAG_NOEXEC))
ptflags |= PT_FLAG_EXEC;
// Start at the highest level.
// The values of `enum page_size` map to the level index at which that size is mapped.
int level = pagemap.max_page_size;
pt_entry_t *table = pagemap.top_level;
for (;;) {
int index = (virt_addr >> (12 + 9 * level)) & 0x1ff;
// Stop when we reach the level for the requested page size.
if (level == (int)page_size) {
table[index] = pte_new(phys_addr, ptflags);
break;
}
table = get_next_level(pagemap, table, virt_addr, page_size, level, index);
level--;
}
}
#else
#error Unknown architecture
#endif
static pt_entry_t *get_next_level(pagemap_t pagemap, pt_entry_t *current_level,
uint64_t virt, enum page_size desired_sz,
size_t level_idx, size_t entry) {
pt_entry_t *ret;
if (PT_IS_TABLE(current_level[entry])) {
ret = (pt_entry_t *)(size_t)pte_addr(current_level[entry]);
} else {
if (PT_IS_LARGE(current_level[entry])) {
// We are replacing an existing large page with a smaller page.
// Split the previous mapping into mappings of the newly requested size
// before performing the requested map operation.
if ((level_idx >= VMM_MAX_LEVEL) || (level_idx == 0))
panic(false, "Unexpected level in get_next_level");
if (desired_sz >= VMM_MAX_LEVEL)
panic(false, "Unexpected page size in get_next_level");
uint64_t old_page_size = page_sizes[level_idx];
uint64_t new_page_size = page_sizes[desired_sz];
// Save all the information from the old entry at this level
uint64_t old_flags = PT_TO_VMM_FLAGS(current_level[entry]);
uint64_t old_phys = pte_addr(current_level[entry]);
uint64_t old_virt = virt & ~(old_page_size - 1);
if (old_phys & (old_page_size - 1))
panic(false, "Unexpected page table entry address in get_next_level");
// Allocate a table for the next level
ret = ext_mem_alloc(PT_SIZE);
current_level[entry] = pte_new((size_t)ret, PT_TABLE_FLAGS);
// Recreate the old mapping with smaller pages
for (uint64_t i = 0; i < old_page_size; i += new_page_size) {
map_page(pagemap, old_virt + i, old_phys + i, old_flags, desired_sz);
}
} else {
// Allocate a table for the next level
ret = ext_mem_alloc(PT_SIZE);
current_level[entry] = pte_new((size_t)ret, PT_TABLE_FLAGS);
}
}
return ret;
}