rulimine/stage2/protos/stivale2.c
2020-09-20 12:03:44 +02:00

351 lines
11 KiB
C

#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <limine.h>
#include <protos/stivale.h>
#include <protos/stivale2.h>
#include <lib/elf.h>
#include <lib/blib.h>
#include <lib/acpi.h>
#include <lib/config.h>
#include <lib/time.h>
#include <lib/print.h>
#include <lib/rand.h>
#include <lib/real.h>
#include <lib/libc.h>
#include <sys/smp.h>
#include <drivers/vbe.h>
#include <lib/term.h>
#include <sys/pic.h>
#include <fs/file.h>
#include <mm/pmm.h>
#include <stivale/stivale2.h>
#define KASLR_SLIDE_BITMASK 0x03FFFF000u
struct stivale2_struct stivale2_struct = {0};
inline static size_t get_phys_addr(uint64_t addr) {
if (addr & ((uint64_t)1 << 63))
return addr - FIXED_HIGHER_HALF_OFFSET_64;
return addr;
}
static void *get_tag(struct stivale2_header *s, uint64_t id) {
struct stivale2_tag *tag = (void*)get_phys_addr(s->tags);
for (;;) {
if (tag == NULL)
return NULL;
if (tag->identifier == id)
return tag;
tag = (void*)get_phys_addr(tag->next);
}
}
static void append_tag(struct stivale2_struct *s, struct stivale2_tag *tag) {
tag->next = s->tags;
s->tags = (uint64_t)(size_t)tag;
}
void stivale2_load(char *cmdline, int boot_drive) {
int kernel_drive; {
char buf[32];
if (!config_get_value(buf, 0, 32, "KERNEL_DRIVE")) {
kernel_drive = boot_drive;
} else {
kernel_drive = (int)strtoui(buf);
}
}
int kernel_part; {
char buf[32];
if (!config_get_value(buf, 0, 32, "KERNEL_PARTITION")) {
panic("KERNEL_PARTITION not specified");
} else {
kernel_part = (int)strtoui(buf);
}
}
char *kernel_path = conv_mem_alloc(128);
if (!config_get_value(kernel_path, 0, 128, "KERNEL_PATH")) {
panic("KERNEL_PATH not specified");
}
struct file_handle *fd = conv_mem_alloc(sizeof(struct file_handle));
if (fopen(fd, kernel_drive, kernel_part, kernel_path)) {
panic("Could not open kernel file");
}
struct stivale2_header stivale2_hdr;
int bits = elf_bits(fd);
int ret;
uint64_t slide = 0;
bool level5pg = false;
switch (bits) {
case 64: {
// Check if 64 bit CPU
uint32_t eax, ebx, ecx, edx;
cpuid(0x80000001, 0, &eax, &ebx, &ecx, &edx);
if (!(edx & (1 << 29))) {
panic("stivale2: This CPU does not support 64-bit mode.");
}
// Check if 5-level paging is available
cpuid(0x00000007, 0, &eax, &ebx, &ecx, &edx);
if (ecx & (1 << 16)) {
print("stivale2: CPU has 5-level paging support\n");
level5pg = true;
}
ret = elf64_load_section(fd, &stivale2_hdr, ".stivale2hdr", sizeof(struct stivale2_header), slide);
if (!ret && (stivale2_hdr.flags & 1)) {
// KASLR is enabled, set the slide
slide = rand64() & KASLR_SLIDE_BITMASK;
// Re-read the .stivale2hdr with slid relocations
ret = elf64_load_section(fd, &stivale2_hdr, ".stivale2hdr", sizeof(struct stivale2_header), slide);
}
break;
}
case 32:
ret = elf32_load_section(fd, &stivale2_hdr, ".stivale2hdr", sizeof(struct stivale2_header));
break;
default:
panic("stivale2: Not 32 nor 64 bit x86 ELF file.");
}
print("stivale2: %u-bit ELF file detected\n", bits);
switch (ret) {
case 1:
panic("stivale2: File is not a valid ELF.");
case 2:
panic("stivale2: Section .stivale2hdr not found.");
case 3:
panic("stivale2: Section .stivale2hdr exceeds the size of the struct.");
case 4:
panic("stivale2: Section .stivale2hdr is smaller than size of the struct.");
}
print("stivale2: Requested stack at %X\n", stivale2_hdr.stack);
uint64_t entry_point = 0;
uint64_t top_used_addr = 0;
switch (bits) {
case 64:
elf64_load(fd, &entry_point, &top_used_addr, slide, 0x1001);
break;
case 32:
elf32_load(fd, (uint32_t *)&entry_point, (uint32_t *)&top_used_addr, 0x1001);
break;
}
if (stivale2_hdr.entry_point != 0)
entry_point = stivale2_hdr.entry_point;
print("stivale2: Kernel slide: %X\n", slide);
print("stivale2: Top used address in ELF: %X\n", top_used_addr);
strcpy(stivale2_struct.bootloader_brand, "Limine");
strcpy(stivale2_struct.bootloader_version, LIMINE_VERSION);
//////////////////////////////////////////////
// Create firmware struct tag
//////////////////////////////////////////////
{
struct stivale2_struct_tag_firmware *tag = conv_mem_alloc(sizeof(struct stivale2_struct_tag_firmware));
tag->tag.identifier = STIVALE2_STRUCT_TAG_FIRMWARE_ID;
tag->flags = 1 << 0; // bit 0 = BIOS boot
append_tag(&stivale2_struct, (struct stivale2_tag *)tag);
}
//////////////////////////////////////////////
// Create modules struct tag
//////////////////////////////////////////////
{
struct stivale2_struct_tag_modules *tag = conv_mem_alloc(sizeof(struct stivale2_struct_tag_modules));
tag->tag.identifier = STIVALE2_STRUCT_TAG_MODULES_ID;
tag->module_count = 0;
for (int i = 0; ; i++) {
char module_file[64];
if (!config_get_value(module_file, i, 64, "MODULE_PATH"))
break;
tag->module_count++;
struct stivale2_module *m = conv_mem_alloc_aligned(sizeof(struct stivale2_module), 1);
if (!config_get_value(m->string, i, 128, "MODULE_STRING")) {
m->string[0] = '\0';
}
int part; {
char buf[32];
if (!config_get_value(buf, i, 32, "MODULE_PARTITION")) {
part = kernel_part;
} else {
part = (int)strtoui(buf);
}
}
struct file_handle f;
if (fopen(&f, fd->disk, part, module_file)) {
panic("Requested module with path \"%s\" not found!\n", module_file);
}
void *module_addr = (void *)(((uint32_t)top_used_addr & 0xfff) ?
((uint32_t)top_used_addr & ~((uint32_t)0xfff)) + 0x1000 :
(uint32_t)top_used_addr);
memmap_alloc_range((size_t)module_addr, f.size, 0x1001);
fread(&f, module_addr, 0, f.size);
m->begin = (uint64_t)(size_t)module_addr;
m->end = m->begin + f.size;
top_used_addr = (uint64_t)(size_t)m->end;
print("stivale2: Requested module %u:\n", i);
print(" Path: %s\n", module_file);
print(" String: %s\n", m->string);
print(" Begin: %X\n", m->begin);
print(" End: %X\n", m->end);
}
append_tag(&stivale2_struct, (struct stivale2_tag *)tag);
}
//////////////////////////////////////////////
// Create RSDP struct tag
//////////////////////////////////////////////
{
struct stivale2_struct_tag_rsdp *tag = conv_mem_alloc(sizeof(struct stivale2_struct_tag_rsdp));
tag->tag.identifier = STIVALE2_STRUCT_TAG_RSDP_ID;
tag->rsdp = (uint64_t)(size_t)acpi_get_rsdp();
append_tag(&stivale2_struct, (struct stivale2_tag *)tag);
}
//////////////////////////////////////////////
// Create cmdline struct tag
//////////////////////////////////////////////
{
struct stivale2_struct_tag_cmdline *tag = conv_mem_alloc(sizeof(struct stivale2_struct_tag_cmdline));
tag->tag.identifier = STIVALE2_STRUCT_TAG_CMDLINE_ID;
tag->cmdline = (uint64_t)(size_t)cmdline;
append_tag(&stivale2_struct, (struct stivale2_tag *)tag);
}
//////////////////////////////////////////////
// Create epoch struct tag
//////////////////////////////////////////////
{
struct stivale2_struct_tag_epoch *tag = conv_mem_alloc(sizeof(struct stivale2_struct_tag_epoch));
tag->tag.identifier = STIVALE2_STRUCT_TAG_EPOCH_ID;
tag->epoch = time();
print("stivale2: Current epoch: %U\n", tag->epoch);
append_tag(&stivale2_struct, (struct stivale2_tag *)tag);
}
//////////////////////////////////////////////
// Create framebuffer struct tag
//////////////////////////////////////////////
{
struct stivale2_header_tag_framebuffer *hdrtag = get_tag(&stivale2_hdr, STIVALE2_HEADER_TAG_FRAMEBUFFER_ID);
term_deinit();
if (hdrtag != NULL) {
struct stivale2_struct_tag_framebuffer *tag = conv_mem_alloc(sizeof(struct stivale2_struct_tag_framebuffer));
tag->tag.identifier = STIVALE2_STRUCT_TAG_FRAMEBUFFER_ID;
tag->framebuffer_width = hdrtag->framebuffer_width;
tag->framebuffer_height = hdrtag->framebuffer_height;
tag->framebuffer_bpp = hdrtag->framebuffer_bpp;
uint32_t *fb32;
init_vbe(&fb32,
&tag->framebuffer_pitch,
&tag->framebuffer_width,
&tag->framebuffer_height,
&tag->framebuffer_bpp);
tag->framebuffer_addr = (uint64_t)(size_t)fb32;
append_tag(&stivale2_struct, (struct stivale2_tag *)tag);
}
}
size_t memmap_entries;
struct e820_entry_t *memmap;
//////////////////////////////////////////////
// Create memmap struct tag
//////////////////////////////////////////////
{
struct stivale2_struct_tag_memmap *tag = conv_mem_alloc(sizeof(struct stivale2_struct_tag_memmap));
tag->tag.identifier = STIVALE2_STRUCT_TAG_MEMMAP_ID;
memmap = get_memmap(&memmap_entries);
tag->entries = (uint64_t)memmap_entries;
void *tag_memmap = conv_mem_alloc_aligned(sizeof(struct e820_entry_t) * memmap_entries, 1);
memcpy(tag_memmap, memmap, sizeof(struct e820_entry_t) * memmap_entries);
append_tag(&stivale2_struct, (struct stivale2_tag *)tag);
}
// Check if 5-level paging tag is requesting support
bool level5pg_requested = get_tag(&stivale2_hdr, STIVALE2_HEADER_TAG_5LV_PAGING_ID) ? true : false;
pagemap_t pagemap = {0};
if (bits == 64)
pagemap = stivale_build_pagemap(level5pg && level5pg_requested,
memmap, memmap_entries);
//////////////////////////////////////////////
// Create SMP struct tag
//////////////////////////////////////////////
{
struct stivale2_header_tag_smp *smp_hdr_tag = get_tag(&stivale2_hdr, STIVALE2_HEADER_TAG_SMP_ID);
if (smp_hdr_tag != NULL) {
struct stivale2_struct_tag_smp *tag = conv_mem_alloc(sizeof(struct stivale2_struct_tag_smp));
tag->tag.identifier = STIVALE2_STRUCT_TAG_SMP_ID;
init_smp((size_t*)&tag->cpu_count, bits == 64, level5pg && level5pg_requested,
pagemap, smp_hdr_tag->flags & 1);
append_tag(&stivale2_struct, (struct stivale2_tag *)tag);
}
}
print("Generated tags:\n");
struct stivale2_tag *taglist = (void*)(size_t)stivale2_struct.tags;
for (size_t i = 0; ; i++) {
print("Tag #%u ID: %X\n", i, taglist->identifier);
if (taglist->next)
taglist = (void*)(size_t)taglist->next;
else
break;
}
stivale_spinup(bits, level5pg && level5pg_requested, pagemap,
entry_point, &stivale2_struct, stivale2_hdr.stack);
}