304 lines
8.4 KiB
C
304 lines
8.4 KiB
C
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <mm/pmm.h>
|
|
#include <sys/e820.h>
|
|
#include <lib/blib.h>
|
|
#include <lib/libc.h>
|
|
#include <lib/print.h>
|
|
|
|
#define PAGE_SIZE 4096
|
|
#define MEMMAP_BASE ((size_t)0x100000)
|
|
#define MEMMAP_MAX_ENTRIES 256
|
|
|
|
static struct e820_entry_t memmap[MEMMAP_MAX_ENTRIES];
|
|
static size_t memmap_entries = 0;
|
|
|
|
static const char *memmap_type(uint32_t type) {
|
|
switch (type) {
|
|
case MEMMAP_USABLE:
|
|
return "Usable RAM";
|
|
case MEMMAP_RESERVED:
|
|
return "Reserved";
|
|
case MEMMAP_ACPI_RECLAIMABLE:
|
|
return "ACPI reclaimable";
|
|
case MEMMAP_ACPI_NVS:
|
|
return "ACPI NVS";
|
|
case MEMMAP_BAD_MEMORY:
|
|
return "Bad memory";
|
|
case MEMMAP_BOOTLOADER_RECLAIMABLE:
|
|
return "Bootloader reclaimable";
|
|
case MEMMAP_KERNEL_AND_MODULES:
|
|
return "Kernel/Modules";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
void print_memmap(struct e820_entry_t *mm, size_t size) {
|
|
for (size_t i = 0; i < size; i++) {
|
|
print("[%X -> %X] : %X <%s>\n",
|
|
mm[i].base,
|
|
mm[i].base + mm[i].length,
|
|
mm[i].length,
|
|
memmap_type(mm[i].type));
|
|
}
|
|
}
|
|
|
|
static int align_entry(uint64_t *base, uint64_t *length) {
|
|
if (*length < PAGE_SIZE)
|
|
return -1;
|
|
|
|
uint64_t orig_base = *base;
|
|
|
|
*base = ALIGN_UP(*base, PAGE_SIZE);
|
|
|
|
*length -= (*base - orig_base);
|
|
*length = ALIGN_DOWN(*length, PAGE_SIZE);
|
|
|
|
if (!length)
|
|
return -1;
|
|
|
|
uint64_t top = *base + *length;
|
|
|
|
if (*base < MEMMAP_BASE) {
|
|
if (top > MEMMAP_BASE) {
|
|
*length -= MEMMAP_BASE - *base;
|
|
*base = MEMMAP_BASE;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sanitise_entries(void) {
|
|
for (size_t i = 0; i < memmap_entries; i++) {
|
|
if (memmap[i].type != 1)
|
|
continue;
|
|
|
|
// Check if the entry overlaps other entries
|
|
for (size_t j = 0; j < memmap_entries; j++) {
|
|
if (j == i)
|
|
continue;
|
|
|
|
uint64_t base = memmap[i].base;
|
|
uint64_t length = memmap[i].length;
|
|
uint64_t top = base + length;
|
|
|
|
uint64_t res_base = memmap[j].base;
|
|
uint64_t res_length = memmap[j].length;
|
|
uint64_t res_top = res_base + res_length;
|
|
|
|
// TODO actually handle splitting off usable chunks
|
|
if ( (res_base >= base && res_base < top)
|
|
&& (res_top >= base && res_top < top) ) {
|
|
panic("A non-usable e820 entry is inside a usable section.");
|
|
}
|
|
|
|
if (res_base >= base && res_base < top) {
|
|
top = res_base;
|
|
}
|
|
|
|
if (res_top >= base && res_top < top) {
|
|
base = res_top;
|
|
}
|
|
|
|
memmap[i].base = base;
|
|
memmap[i].length = top - base;
|
|
}
|
|
|
|
if (!memmap[i].length || align_entry(&memmap[i].base, &memmap[i].length)) {
|
|
// Eradicate from memmap
|
|
for (size_t j = i; j < memmap_entries - 1; j++) {
|
|
memmap[j] = memmap[j+1];
|
|
}
|
|
memmap_entries--;
|
|
i--;
|
|
}
|
|
}
|
|
|
|
// Sort the entries
|
|
for (size_t p = 0; p < memmap_entries - 1; p++) {
|
|
uint64_t min = memmap[p].base;
|
|
size_t min_index = p;
|
|
for (size_t i = p; i < memmap_entries; i++) {
|
|
if (memmap[i].base < min) {
|
|
min = memmap[i].base;
|
|
min_index = i;
|
|
}
|
|
}
|
|
struct e820_entry_t min_e = memmap[min_index];
|
|
memmap[min_index] = memmap[p];
|
|
memmap[p] = min_e;
|
|
}
|
|
}
|
|
|
|
struct e820_entry_t *get_memmap(size_t *entries) {
|
|
sanitise_entries();
|
|
|
|
*entries = memmap_entries;
|
|
|
|
print("Memory map requested. Current layout:\n");
|
|
print_memmap(memmap, memmap_entries);
|
|
|
|
return memmap;
|
|
}
|
|
|
|
void init_memmap(void) {
|
|
for (size_t i = 0; i < e820_entries; i++) {
|
|
if (memmap_entries == MEMMAP_MAX_ENTRIES) {
|
|
panic("Memory map exhausted.");
|
|
}
|
|
|
|
memmap[memmap_entries++] = e820_map[i];
|
|
}
|
|
|
|
sanitise_entries();
|
|
}
|
|
|
|
void *ext_mem_alloc(size_t count) {
|
|
return ext_mem_alloc_type(count, MEMMAP_BOOTLOADER_RECLAIMABLE);
|
|
}
|
|
|
|
void *ext_mem_alloc_aligned(size_t count, size_t alignment) {
|
|
return ext_mem_alloc_aligned_type(count, alignment, MEMMAP_BOOTLOADER_RECLAIMABLE);
|
|
}
|
|
|
|
void *ext_mem_alloc_type(size_t count, uint32_t type) {
|
|
return ext_mem_alloc_aligned_type(count, 4, type);
|
|
}
|
|
|
|
// Allocate memory top down, hopefully without bumping into kernel or modules
|
|
void *ext_mem_alloc_aligned_type(size_t count, size_t alignment, uint32_t type) {
|
|
for (int i = memmap_entries - 1; i >= 0; i--) {
|
|
if (memmap[i].type != 1)
|
|
continue;
|
|
|
|
int64_t entry_base = (int64_t)(memmap[i].base);
|
|
int64_t entry_top = (int64_t)(memmap[i].base + memmap[i].length);
|
|
|
|
// Let's make sure the entry is not > 4GiB
|
|
if (entry_base >= 0x100000000 || entry_top >= 0x100000000) {
|
|
// Theoretically there could be an entry which crosses the 4GiB
|
|
// boundary, but realistically this does not happen as far as I
|
|
// have seen. Let's just discard the entry.
|
|
continue;
|
|
}
|
|
|
|
int64_t alloc_base = ALIGN_DOWN(entry_top - (int64_t)count, alignment);
|
|
|
|
// This entry is too small for us.
|
|
if (alloc_base < entry_base)
|
|
continue;
|
|
|
|
// We now reserve the range we need.
|
|
int64_t aligned_length = entry_top - alloc_base;
|
|
memmap_alloc_range((uint64_t)alloc_base, (uint64_t)aligned_length, type);
|
|
|
|
void *ret = (void *)(size_t)alloc_base;
|
|
|
|
// Zero out allocated space
|
|
memset(ret, 0, count);
|
|
|
|
return ret;
|
|
}
|
|
|
|
panic("High memory allocator: Out of memory");
|
|
}
|
|
|
|
void memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type) {
|
|
uint64_t top = base + length;
|
|
|
|
for (size_t i = 0; i < memmap_entries; i++) {
|
|
if (memmap[i].type != 1)
|
|
continue;
|
|
|
|
uint64_t entry_base = memmap[i].base;
|
|
uint64_t entry_top = memmap[i].base + memmap[i].length;
|
|
if (base >= entry_base && base < entry_top &&
|
|
top >= entry_base && top <= entry_top) {
|
|
|
|
memmap[i].length = base - entry_base;
|
|
|
|
if (memmap[i].length == 0) {
|
|
// Eradicate from memmap
|
|
for (size_t j = i; j < memmap_entries - 1; j++) {
|
|
memmap[j] = memmap[j+1];
|
|
}
|
|
memmap_entries--;
|
|
}
|
|
|
|
if (memmap_entries >= MEMMAP_MAX_ENTRIES) {
|
|
panic("Memory map exhausted.");
|
|
}
|
|
struct e820_entry_t *target = &memmap[memmap_entries];
|
|
|
|
target->length = entry_top - top;
|
|
|
|
if (target->length != 0) {
|
|
target->base = top;
|
|
target->type = 1;
|
|
|
|
memmap_entries++;
|
|
}
|
|
|
|
if (memmap_entries >= MEMMAP_MAX_ENTRIES) {
|
|
panic("Memory map exhausted.");
|
|
}
|
|
target = &memmap[memmap_entries++];
|
|
|
|
target->type = type;
|
|
target->base = base;
|
|
target->length = length;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
panic("Out of memory");
|
|
}
|
|
|
|
extern symbol bss_end;
|
|
static size_t bump_allocator_base = (size_t)bss_end;
|
|
static size_t bump_allocator_limit = 0;
|
|
|
|
void conv_mem_rewind(void) {
|
|
size_t *old_base = (size_t *)(bump_allocator_base - sizeof(size_t));
|
|
bump_allocator_base = *old_base;
|
|
}
|
|
|
|
void *conv_mem_alloc(size_t count) {
|
|
return conv_mem_alloc_aligned(count, 4);
|
|
}
|
|
|
|
void *conv_mem_alloc_aligned(size_t count, size_t alignment) {
|
|
if (!bump_allocator_limit) {
|
|
// The balloc limit is the beginning of the GDT
|
|
struct {
|
|
uint16_t limit;
|
|
uint32_t ptr;
|
|
} __attribute__((packed)) gdtr;
|
|
asm volatile ("sgdt %0" :: "m"(gdtr) : "memory");
|
|
bump_allocator_limit = gdtr.ptr;
|
|
}
|
|
|
|
size_t new_base = ALIGN_UP(bump_allocator_base, alignment);
|
|
void *ret = (void *)new_base;
|
|
|
|
size_t *old_base = (size_t *)(new_base + count);
|
|
new_base += count + sizeof(size_t);
|
|
|
|
if (new_base >= bump_allocator_limit)
|
|
panic("Memory allocation failed");
|
|
|
|
*old_base = bump_allocator_base;
|
|
bump_allocator_base = new_base;
|
|
|
|
// Zero out allocated space
|
|
memset(ret, 0, count);
|
|
|
|
return ret;
|
|
}
|