rulimine/common/mm/pmm.s2.c

773 lines
22 KiB
C

#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <mm/pmm.h>
#include <sys/e820.h>
#include <lib/acpi.h>
#include <lib/misc.h>
#include <lib/libc.h>
#include <lib/print.h>
#if defined (UEFI)
# include <efi.h>
#endif
#define PAGE_SIZE 4096
#if defined (BIOS)
extern symbol bss_end;
#endif
bool allocations_disallowed = true;
static void sanitise_entries(struct memmap_entry *, size_t *, bool);
void *conv_mem_alloc(size_t count) {
static uint64_t base = 4096;
if (allocations_disallowed)
panic(false, "Memory allocations disallowed");
count = ALIGN_UP(count, 4096);
for (;;) {
if (base + count > 0x100000)
panic(false, "Conventional memory allocation failed");
if (memmap_alloc_range(base, count, MEMMAP_BOOTLOADER_RECLAIMABLE, MEMMAP_USABLE, false, false, false)) {
void *ret = (void *)(uintptr_t)base;
// Zero out allocated space
memset(ret, 0, count);
base += count;
sanitise_entries(memmap, &memmap_entries, false);
return ret;
}
base += 4096;
}
}
#if defined (BIOS)
#define memmap_max_entries ((size_t)512)
struct memmap_entry memmap[memmap_max_entries];
size_t memmap_entries = 0;
#endif
#if defined (UEFI)
static size_t memmap_max_entries;
struct memmap_entry *memmap;
size_t memmap_entries = 0;
struct memmap_entry *untouched_memmap;
size_t untouched_memmap_entries = 0;
#endif
static const char *memmap_type(uint32_t type) {
switch (type) {
case MEMMAP_USABLE:
return "Usable RAM";
case MEMMAP_RESERVED:
return "Reserved";
case MEMMAP_ACPI_RECLAIMABLE:
return "ACPI reclaimable";
case MEMMAP_ACPI_NVS:
return "ACPI NVS";
case MEMMAP_BAD_MEMORY:
return "Bad memory";
case MEMMAP_FRAMEBUFFER:
return "Framebuffer";
case MEMMAP_BOOTLOADER_RECLAIMABLE:
return "Bootloader reclaimable";
case MEMMAP_KERNEL_AND_MODULES:
return "Kernel/Modules";
case MEMMAP_EFI_RECLAIMABLE:
return "EFI reclaimable";
default:
return "???";
}
}
void print_memmap(struct memmap_entry *mm, size_t size) {
for (size_t i = 0; i < size; i++) {
print("[%X -> %X] : %X <%s (%x)>\n",
mm[i].base,
mm[i].base + mm[i].length,
mm[i].length,
memmap_type(mm[i].type), mm[i].type);
}
}
static bool align_entry(uint64_t *base, uint64_t *length) {
if (*length < PAGE_SIZE)
return false;
uint64_t orig_base = *base;
*base = ALIGN_UP(*base, PAGE_SIZE);
*length -= (*base - orig_base);
*length = ALIGN_DOWN(*length, PAGE_SIZE);
if (!length)
return false;
return true;
}
static bool sanitiser_keep_first_page = false;
static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_entries) {
size_t count = *_count;
for (size_t i = 0; i < count; i++) {
if (m[i].type != MEMMAP_USABLE)
continue;
// Check if the entry overlaps other entries
for (size_t j = 0; j < count; j++) {
if (j == i)
continue;
uint64_t base = m[i].base;
uint64_t length = m[i].length;
uint64_t top = base + length;
uint64_t res_base = m[j].base;
uint64_t res_length = m[j].length;
uint64_t res_top = res_base + res_length;
if ( (res_base >= base && res_base < top)
&& (res_top >= base && res_top < top) ) {
// TODO actually handle splitting off usable chunks
panic(false, "A non-usable memory map entry is inside a usable section.");
}
if (res_base >= base && res_base < top) {
top = res_base;
}
if (res_top >= base && res_top < top) {
base = res_top;
}
m[i].base = base;
m[i].length = top - base;
}
if (!m[i].length
|| (align_entries && !align_entry(&m[i].base, &m[i].length))) {
// Remove i from memmap
m[i] = m[count - 1];
count--; i--;
}
}
// Remove 0 length usable entries and usable entries below 0x1000
for (size_t i = 0; i < count; i++) {
if (m[i].type != MEMMAP_USABLE)
continue;
if (!sanitiser_keep_first_page && m[i].base < 0x1000) {
if (m[i].base + m[i].length <= 0x1000) {
goto del_mm1;
}
m[i].length -= 0x1000 - m[i].base;
m[i].base = 0x1000;
}
if (m[i].length == 0) {
del_mm1:
// Remove i from memmap
m[i] = m[count - 1];
count--; i--;
}
}
// Sort the entries
for (size_t p = 0; p < count - 1; p++) {
uint64_t min = m[p].base;
size_t min_index = p;
for (size_t i = p; i < count; i++) {
if (m[i].base < min) {
min = m[i].base;
min_index = i;
}
}
struct memmap_entry min_e = m[min_index];
m[min_index] = m[p];
m[p] = min_e;
}
// Merge contiguous bootloader-reclaimable and usable entries
for (size_t i = 0; i < count - 1; i++) {
if (m[i].type != MEMMAP_BOOTLOADER_RECLAIMABLE
&& m[i].type != MEMMAP_USABLE)
continue;
if (m[i+1].type == m[i].type
&& m[i+1].base == m[i].base + m[i].length) {
m[i].length += m[i+1].length;
// Eradicate from memmap
for (size_t j = i + 2; j < count; j++) {
m[j - 1] = m[j];
}
count--;
i--;
}
}
*_count = count;
}
#if defined (UEFI)
static void pmm_reclaim_uefi_mem(struct memmap_entry *m, size_t *_count);
#endif
struct memmap_entry *get_memmap(size_t *entries) {
#if defined (UEFI)
if (efi_boot_services_exited == false) {
panic(true, "get_memmap called whilst in boot services");
}
pmm_reclaim_uefi_mem(memmap, &memmap_entries);
#endif
sanitise_entries(memmap, &memmap_entries, true);
*entries = memmap_entries;
allocations_disallowed = true;
return memmap;
}
#if defined (BIOS)
void init_memmap(void) {
for (size_t i = 0; i < e820_entries; i++) {
if (memmap_entries == memmap_max_entries) {
panic(false, "Memory map exhausted.");
}
memmap[memmap_entries] = e820_map[i];
uint64_t top = memmap[memmap_entries].base + memmap[memmap_entries].length;
if (memmap[memmap_entries].type == MEMMAP_USABLE) {
if (memmap[memmap_entries].base >= EBDA && memmap[memmap_entries].base < 0x100000) {
if (top <= 0x100000)
continue;
memmap[memmap_entries].length -= 0x100000 - memmap[memmap_entries].base;
memmap[memmap_entries].base = 0x100000;
}
if (top > EBDA && top <= 0x100000) {
memmap[memmap_entries].length -= top - EBDA;
}
}
memmap_entries++;
}
sanitise_entries(memmap, &memmap_entries, false);
// Allocate bootloader itself
memmap_alloc_range(4096,
ALIGN_UP((uintptr_t)bss_end, 4096) - 4096, MEMMAP_BOOTLOADER_RECLAIMABLE, 0, true, false, false);
sanitise_entries(memmap, &memmap_entries, false);
allocations_disallowed = false;
}
#endif
#if defined (UEFI)
static struct memmap_entry *recl;
extern symbol __slide;
extern symbol __image_size;
void init_memmap(void) {
EFI_STATUS status;
EFI_MEMORY_DESCRIPTOR tmp_mmap[1];
efi_mmap_size = sizeof(tmp_mmap);
UINTN mmap_key = 0;
gBS->GetMemoryMap(&efi_mmap_size, tmp_mmap, &mmap_key, &efi_desc_size, &efi_desc_ver);
memmap_max_entries = (efi_mmap_size / efi_desc_size) + 512;
efi_mmap_size += 4096;
status = gBS->AllocatePool(EfiLoaderData, efi_mmap_size, (void **)&efi_mmap);
if (status) {
goto fail;
}
status = gBS->AllocatePool(EfiLoaderData, memmap_max_entries * sizeof(struct memmap_entry), (void **)&memmap);
if (status) {
goto fail;
}
status = gBS->AllocatePool(EfiLoaderData, memmap_max_entries * sizeof(struct memmap_entry), (void **)&untouched_memmap);
if (status) {
goto fail;
}
status = gBS->GetMemoryMap(&efi_mmap_size, efi_mmap, &mmap_key, &efi_desc_size, &efi_desc_ver);
if (status) {
goto fail;
}
size_t entry_count = efi_mmap_size / efi_desc_size;
for (size_t i = 0; i < entry_count; i++) {
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + i * efi_desc_size;
uint32_t our_type;
switch (entry->Type) {
case EfiReservedMemoryType:
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiUnusableMemory:
case EfiMemoryMappedIO:
case EfiMemoryMappedIOPortSpace:
case EfiPalCode:
case EfiLoaderCode:
case EfiLoaderData:
default:
our_type = MEMMAP_RESERVED; break;
case EfiBootServicesCode:
case EfiBootServicesData:
our_type = MEMMAP_EFI_RECLAIMABLE; break;
case EfiACPIReclaimMemory:
our_type = MEMMAP_ACPI_RECLAIMABLE; break;
case EfiACPIMemoryNVS:
our_type = MEMMAP_ACPI_NVS; break;
case EfiConventionalMemory:
our_type = MEMMAP_USABLE; break;
}
uint64_t base = entry->PhysicalStart;
uint64_t length = entry->NumberOfPages * 4096;
#if !defined (__x86_64__) && !defined (__aarch64__) && !defined (__riscv64)
// We only manage memory below 4GiB. For anything above that, make it
// EFI reclaimable.
if (our_type == MEMMAP_USABLE) {
if (base + length > 0x100000000) {
if (base < 0x100000000) {
memmap[memmap_entries].base = base;
memmap[memmap_entries].length = 0x100000000 - base;
memmap[memmap_entries].type = our_type;
base = 0x100000000;
length -= memmap[memmap_entries].length;
memmap_entries++;
}
our_type = MEMMAP_EFI_RECLAIMABLE;
}
}
#endif
memmap[memmap_entries].base = base;
memmap[memmap_entries].length = length;
memmap[memmap_entries].type = our_type;
memmap_entries++;
}
bool old_skfp = sanitiser_keep_first_page;
sanitiser_keep_first_page = true;
sanitise_entries(memmap, &memmap_entries, false);
allocations_disallowed = false;
// Let's leave 64MiB to the firmware below 4GiB
for (size_t i = 0; i < 64; i++) {
ext_mem_alloc_type(0x100000, MEMMAP_EFI_RECLAIMABLE);
}
memcpy(untouched_memmap, memmap, memmap_entries * sizeof(struct memmap_entry));
untouched_memmap_entries = memmap_entries;
// Now own all the usable entries
for (size_t i = 0; i < untouched_memmap_entries; i++) {
if (untouched_memmap[i].type != MEMMAP_USABLE)
continue;
EFI_PHYSICAL_ADDRESS base = untouched_memmap[i].base;
status = gBS->AllocatePages(AllocateAddress, EfiLoaderData,
untouched_memmap[i].length / 4096, &base);
if (status) {
for (size_t j = 0; j < untouched_memmap[i].length; j += 4096) {
base = untouched_memmap[i].base + j;
status = gBS->AllocatePages(AllocateAddress, EfiLoaderData, 1, &base);
if (status) {
memmap_alloc_range(base, 4096, MEMMAP_EFI_RECLAIMABLE, MEMMAP_USABLE, true, false, false);
}
}
}
}
memcpy(untouched_memmap, memmap, memmap_entries * sizeof(struct memmap_entry));
untouched_memmap_entries = memmap_entries;
sanitiser_keep_first_page = old_skfp;
// Allocate bootloader itself
memmap_alloc_range((uintptr_t)__slide, (uintptr_t)__image_size,
MEMMAP_BOOTLOADER_RECLAIMABLE, 0, true, false, true);
sanitise_entries(memmap, &memmap_entries, false);
recl = ext_mem_alloc(1024 * sizeof(struct memmap_entry));
return;
fail:
panic(false, "pmm: Failure initialising memory map");
}
static void pmm_reclaim_uefi_mem(struct memmap_entry *m, size_t *_count) {
size_t count = *_count;
size_t recl_i = 0;
for (size_t i = 0; i < count; i++) {
if (m[i].type == MEMMAP_EFI_RECLAIMABLE) {
recl[recl_i++] = m[i];
}
}
for (size_t ri = 0; ri < recl_i; ri++) {
struct memmap_entry *r = &recl[ri];
// Punch holes in our EFI reclaimable entry for every EFI area which is
// boot services or conventional that fits within
size_t efi_mmap_entry_count = efi_mmap_size / efi_desc_size;
for (size_t i = 0; i < efi_mmap_entry_count; i++) {
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + i * efi_desc_size;
uint64_t base = r->base;
uint64_t top = base + r->length;
uint64_t efi_base = entry->PhysicalStart;
uint64_t efi_size = entry->NumberOfPages * 4096;
if (efi_base < base) {
if (efi_size <= base - efi_base)
continue;
efi_size -= base - efi_base;
efi_base = base;
}
uint64_t efi_top = efi_base + efi_size;
if (efi_top > top) {
if (efi_size <= efi_top - top)
continue;
efi_size -= efi_top - top;
efi_top = top;
}
// Sanity check
if (!(efi_base >= base && efi_base < top
&& efi_top > base && efi_top <= top))
continue;
uint32_t our_type;
switch (entry->Type) {
case EfiBootServicesCode:
case EfiBootServicesData:
case EfiConventionalMemory:
our_type = MEMMAP_USABLE; break;
case EfiACPIReclaimMemory:
our_type = MEMMAP_ACPI_RECLAIMABLE; break;
case EfiACPIMemoryNVS:
our_type = MEMMAP_ACPI_NVS; break;
default:
our_type = MEMMAP_RESERVED; break;
}
memmap_alloc_range_in(m, &count, efi_base, efi_size, our_type, 0, true, false, false);
}
}
allocations_disallowed = true;
sanitise_entries(m, &count, false);
*_count = count;
}
void pmm_release_uefi_mem(void) {
EFI_STATUS status;
for (size_t i = 0; i < untouched_memmap_entries; i++) {
if (untouched_memmap[i].type != MEMMAP_USABLE
&& untouched_memmap[i].type != MEMMAP_BOOTLOADER_RECLAIMABLE) {
continue;
}
status = gBS->FreePages(untouched_memmap[i].base, untouched_memmap[i].length / 4096);
if (status) {
panic(false, "pmm: FreePages failure (%x)", status);
}
}
allocations_disallowed = true;
}
#endif
#if defined (BIOS)
struct memmap_entry *get_raw_memmap(size_t *entry_count) {
*entry_count = e820_entries;
return e820_map;
}
#endif
#if defined (UEFI)
struct memmap_entry *get_raw_memmap(size_t *entry_count) {
if (efi_boot_services_exited == false) {
panic(true, "get_raw_memmap called whilst in boot services");
}
bool old_skfp = sanitiser_keep_first_page;
sanitiser_keep_first_page = true;
pmm_reclaim_uefi_mem(untouched_memmap, &untouched_memmap_entries);
sanitiser_keep_first_page = old_skfp;
*entry_count = untouched_memmap_entries;
return untouched_memmap;
}
#endif
void pmm_free(void *ptr, size_t count) {
count = ALIGN_UP(count, 4096);
if (allocations_disallowed)
panic(false, "Memory allocations disallowed");
memmap_alloc_range((uintptr_t)ptr, count, MEMMAP_USABLE, 0, false, false, true);
}
void *ext_mem_alloc(size_t count) {
return ext_mem_alloc_type(count, MEMMAP_BOOTLOADER_RECLAIMABLE);
}
void *ext_mem_alloc_type(size_t count, uint32_t type) {
return ext_mem_alloc_type_aligned(count, type, 4096);
}
void *ext_mem_alloc_type_aligned(size_t count, uint32_t type, size_t alignment) {
return ext_mem_alloc_type_aligned_mode(count, type, alignment, false);
}
// Allocate memory top down.
void *ext_mem_alloc_type_aligned_mode(size_t count, uint32_t type, size_t alignment, bool allow_high_allocs) {
#if !defined (__x86_64__)
(void)allow_high_allocs;
#endif
count = ALIGN_UP(count, alignment);
if (allocations_disallowed)
panic(false, "Memory allocations disallowed");
for (int i = memmap_entries - 1; i >= 0; i--) {
if (memmap[i].type != 1)
continue;
int64_t entry_base = (int64_t)(memmap[i].base);
int64_t entry_top = (int64_t)(memmap[i].base + memmap[i].length);
#if defined(__x86_64__) || defined(__i386__)
// Let's make sure the entry is not > 4GiB
if (entry_top >= 0x100000000
#if defined (__x86_64__)
&& !allow_high_allocs
#endif
) {
entry_top = 0x100000000;
if (entry_base >= entry_top)
continue;
}
#endif
int64_t alloc_base = ALIGN_DOWN(entry_top - (int64_t)count, alignment);
// This entry is too small for us.
if (alloc_base < entry_base)
continue;
// We now reserve the range we need.
int64_t aligned_length = entry_top - alloc_base;
memmap_alloc_range((uint64_t)alloc_base, (uint64_t)aligned_length, type, MEMMAP_USABLE, true, false, false);
void *ret = (void *)(size_t)alloc_base;
// Zero out allocated space
memset(ret, 0, count);
sanitise_entries(memmap, &memmap_entries, false);
return ret;
}
panic(false, "High memory allocator: Out of memory");
}
/// Compute and returns the amount of upper and lower memory till
/// the first hole.
struct meminfo mmap_get_info(size_t mmap_count, struct memmap_entry *mmap) {
struct meminfo info = {0};
for (size_t i = 0; i < mmap_count; i++) {
if (mmap[i].type == MEMMAP_USABLE) {
// NOTE: Upper memory starts at address 1MiB and the
// value of uppermem is the address of the first upper memory
// hole minus 1MiB.
if (mmap[i].base < 0x100000) {
if (mmap[i].base + mmap[i].length > 0x100000) {
size_t low_len = 0x100000 - mmap[i].base;
info.lowermem += low_len;
info.uppermem += mmap[i].length - low_len;
} else {
info.lowermem += mmap[i].length;
}
} else {
info.uppermem += mmap[i].length;
}
}
}
return info;
}
static bool pmm_new_entry(struct memmap_entry *m, size_t *_count,
uint64_t base, uint64_t length, uint32_t type) {
size_t count = *_count;
uint64_t top = base + length;
// Handle overlapping new entries.
for (size_t i = 0; i < count; i++) {
uint64_t entry_base = m[i].base;
uint64_t entry_top = m[i].base + m[i].length;
// Full overlap
if (base <= entry_base && top >= entry_top) {
// Remove overlapped entry
m[i] = m[count - 1];
count--;
i--;
continue;
}
// Partial overlap (bottom)
if (base <= entry_base && top < entry_top && top > entry_base) {
// Entry gets bottom shaved off
m[i].base += top - entry_base;
m[i].length -= top - entry_base;
continue;
}
// Partial overlap (top)
if (base > entry_base && base < entry_top && top >= entry_top) {
// Entry gets top shaved off
m[i].length -= entry_top - base;
continue;
}
// Nested (pain)
if (base > entry_base && top < entry_top) {
// Entry gets top shaved off first
m[i].length -= entry_top - base;
// Now we need to create a new entry
if (count >= memmap_max_entries)
panic(false, "Memory map exhausted.");
struct memmap_entry *new_entry = &m[count++];
new_entry->type = m[i].type;
new_entry->base = top;
new_entry->length = entry_top - top;
continue;
}
}
if (count >= memmap_max_entries)
panic(false, "Memory map exhausted.");
struct memmap_entry *target = &m[count++];
target->type = type;
target->base = base;
target->length = length;
*_count = count;
return true;
}
bool memmap_alloc_range_in(struct memmap_entry *m, size_t *_count,
uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
size_t count = *_count;
if (length == 0)
return true;
if (simulation && new_entry) {
return true;
}
uint64_t top = base + length;
for (size_t i = 0; i < count; i++) {
if (overlay_type != 0 && m[i].type != overlay_type)
continue;
uint64_t entry_base = m[i].base;
uint64_t entry_top = m[i].base + m[i].length;
if (base >= entry_base && base < entry_top && top <= entry_top) {
if (simulation)
return true;
if (pmm_new_entry(m, &count, base, length, type) == true) {
goto success;
}
}
}
if (!new_entry && do_panic)
panic(false, "Memory allocation failure.");
if (!new_entry) {
return false;
}
if (pmm_new_entry(m, &count, base, length, type) == false) {
return false;
}
success:
sanitise_entries(m, &count, false);
*_count = count;
return true;
}
bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
return memmap_alloc_range_in(memmap, &memmap_entries, base, length, type, overlay_type, do_panic, simulation, new_entry);
}